scholarly journals Production Efficiency and Total Protein Yield in Quinoa Grown under Water Stress

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1089
Author(s):  
Antonio A. Pinto ◽  
Susana Fischer ◽  
Rosemarie Wilckens ◽  
Luis Bustamante ◽  
Marisol T. Berti

The increasing water scarcity affects the agricultural sector, and it is a significant constraining factor for crop production in many areas of the world. Water resource management and use related to crop productivity is the most important factor in many crops. Since consumer demands healthy food, the nutritive quality and the active ingredient need to be considered within the productive issue. The objective of this study was to determine water technical efficiency related to seed yield and seed protein content and composition in quinoa (Chenopodium quinoa Willd.) under water stress using data envelopment analysis (DEA). The study was conducted in Chillan, Chile in two growing seasons. As water availability increased, seed yield, globulin, and albumin yield increased, particularly in the genotype Cahuil. The higher average efficiency levels for the DEA were 46.7% and 39.2% in Cahuil in both seasons at 20% available water (AW). The highest average efficiency of globulin yield was recorded in the same genotype (Cahuil). The highest multi-product technical efficiency levels in all input and output included in this study were observed in Cahuil, Regalona, and Morado under water scarcity in both seasons. In future studies related to crop management, DEA provides a good framework for estimating efficiency under restricted factors and multi-product results.

Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 246
Author(s):  
Markose Chekol Zewdie ◽  
Michele Moretti ◽  
Daregot Berihun Tenessa ◽  
Zemen Ayalew Ayele ◽  
Jan Nyssen ◽  
...  

In the past decade, to improve crop production and productivity, Ethiopia has embarked on an ambitious irrigation farming expansion program and has introduced new large- and small-scale irrigation initiatives. However, in Ethiopia, poverty remains a challenge, and crop productivity per unit area of land is very low. Literature on the technical efficiency (TE) of large-scale and small-scale irrigation user farmers as compared to the non-user farmers in Ethiopia is also limited. Investigating smallholder farmers’ TE level and its principal determinants is very important to increase crop production and productivity and to improve smallholder farmers’ livelihood and food security. Using 1026 household-level cross-section data, this study adopts a technology flexible stochastic frontier approach to examine agricultural TE of large-scale irrigation users, small-scale irrigation users and non-user farmers in Ethiopia. The results indicate that, due to poor extension services and old-style agronomic practices, the mean TE of farmers is very low (44.33%), implying that there is a wider room for increasing crop production in the study areas through increasing the TE of smallholder farmers without additional investment in novel agricultural technologies. Results also show that large-scale irrigation user farmers (21.05%) are less technically efficient than small-scale irrigation user farmers (60.29%). However, improving irrigation infrastructure shifts the frontier up and has a positive impact on smallholder farmers’ output.


2014 ◽  
Vol 41 (No. 4) ◽  
pp. 192-200 ◽  
Author(s):  
C. Penella ◽  
S.G. Nebauer ◽  
S. López-Galarza ◽  
A. SanBautista ◽  
A. Rodríguez-Burruezo ◽  
...  

 Water stress is a major environmental factor that limits crop production and it is important to develop crop varieties with higher yield under water scarcity. Increased pepper tolerance to water stress through grafting onto robust rootstocks could be an optimal alternative in the context of environmentally friendly agriculture. Our work evaluated the behaviour of 18 pepper genotypes during vegetative and reproductive stages under water stress in order to select tolerant genotypes to be used as rootstocks for pepper cultivation. The pepper tolerance screening was based on photosynthetic parameters. The genotypes Atlante, C-40, Serrano, PI-152225, ECU-973, BOL-58 and NuMex Conquistador were revealed as the most tolerant genotypes to water stress because they maintained net photosynthetic rate levels under water stress conditions. The selected genotypes were validated as rootstocks on a pepper cultivar in terms of productivity under severe water stress. Plants grafted onto cvs Atlante, PI-152225 and ECU-973 showed higher marketable yields when compared with ungrafted cultivar.  


Agriculture is the most important sector of Indian Economy. Indian agriculture sector provides employment to 50% of the countries workforce. India is the world's largest producer of pulses, rice, wheat, sugarcane, pomegranates etc. The current scenario of agriculture business in India is not up to the mark as expected. There are number of reasons which causes less yield in the agriculture such as unpredictable environmental conditions, excess use of fertilizers (cost is increasing day by day), increased draught frequency and its severity, increasing labor rate, less difference between the income and expenditure, ripeness of soil, influenced suspensions, non-appropriate water management, diseases on crops, invasion of animals and so on. There is need to find the ways which makes the use of Information Technology (IT) concepts and tools wherever possible for increasing automation in the agriculture business, which results in the efficient and effective outcome of agriculture i.e. higher yields. The production efficiency can be increased significantly with technological advancement in agriculture. Internet of Things (IoT) is a novel design approach for precision farming. Farming has seen number of technological transformations in the last decade. By using various smart agriculture gadgets, farmers have gained better control over the process of raising the growing crops and livestocks. One of the major issues which cause fewer yields is the soil health. This paper mainly analyses/reviews the problems related to the soil health (soil fertility), which is a main obstacle in the crop production. Also this study focuses on the use of IoT applications in precision farming. It gives an overview of the relation between crop productivity and soil health


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1482 ◽  
Author(s):  
Petr Procházka ◽  
Vladimír Hönig ◽  
Mansoor Maitah ◽  
Ivana Pljučarská ◽  
Jakub Kleindienst

The primary goal of this article is to evaluate water scarcity in selected countries of the Middle-East and assess the impact on agricultural production. To begin with, the Weighted Anomaly Standardized Precipitation (WASP) Index from 1979 to 2017 was spatially computed for Iran, Iraq and Saudi Arabia. In order to demonstrate the effect of reduced levels of water, the water shortage situation in cities with the population higher than one million was examined. This was accomplished by utilizing the Composite Index approach to make water related statistics more intelligible. A projection for the years of 2020 to 2030 was created in order to demonstrate possible changes in the supply and demand for water in selected countries of the Middle-East. In regards to evaluating the economic effects of water shortages on agricultural sector, effects of lower precipitation on agricultural production in Iran, Iraq and Saudi Arabia were estimated. With ever-increasing urbanization, all countries are currently experiencing a moderate to high water risk. Our research points to excessively high water stress for most analyzed cities through the year 2030. Also, it is demonstrated how much precipitation decreases influence agricultural production in Iran, Iraq and Saudi Arabia. From the analyzed countries, some evidence is found that precipitation negatively influences crop production, primarily for Iran.


2019 ◽  
Vol 17 ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2020 ◽  
Vol 19 (3) ◽  
pp. 89-99
Author(s):  
Musa Seymen ◽  
Atilla Dursun ◽  
Duran Yavuz ◽  
Ertan Sait Kurtar ◽  
Aynur Özbahçe ◽  
...  

Water stress is one of the main constraints which could limits crop productivity, especially in arid and semi-arid regions characterized limited water resources. This study was conducted to investigate the seed yield, oil and mineral contents of 44 lines and 4 commercial pumpkin varieties (2 local and 2 hybrids) in irrigated and drought stress conditions. The study was conceived as a randomized block design with three replications and carried out during the 2017 growing season. On average, the irrigated plots produced 161.27 kg da–1 seed yield whereas it was 33.67 kg da–1 in non-irrigated plots. The highest yield among the commercial pumpkin varieties was obtained from the G2 hybrid variety in the irrigated conditions. On the other hand, in the non-irrigated plots, higher seed yields were obtained from G9, G34, and G36 pure lines. Drought resulted in a remarkable decrease in the total oil content and significant increase in the amount of Ca and Zn in pumpkin seeds. These results clearly indicated that G9 line, which has the highest seed yield in both irrigated and drought conditions, can be utilized as a recommendable parental pumpkin line in future hybrid breeding efforts.


2020 ◽  
Vol 12 (22) ◽  
pp. 3783 ◽  
Author(s):  
Sami Khanal ◽  
Kushal KC ◽  
John P. Fulton ◽  
Scott Shearer ◽  
Erdal Ozkan

Remote sensing (RS) technologies provide a diagnostic tool that can serve as an early warning system, allowing the agricultural community to intervene early on to counter potential problems before they spread widely and negatively impact crop productivity. With the recent advancements in sensor technologies, data management and data analytics, currently, several RS options are available to the agricultural community. However, the agricultural sector is yet to implement RS technologies fully due to knowledge gaps on their sufficiency, appropriateness and techno-economic feasibilities. This study reviewed the literature between 2000 to 2019 that focused on the application of RS technologies in production agriculture, ranging from field preparation, planting, and in-season applications to harvesting, with the objective of contributing to the scientific understanding on the potential for RS technologies to support decision-making within different production stages. We found an increasing trend in the use of RS technologies in agricultural production over the past 20 years, with a sharp increase in applications of unmanned aerial systems (UASs) after 2015. The largest number of scientific papers related to UASs originated from Europe (34%), followed by the United States (20%) and China (11%). Most of the prior RS studies have focused on soil moisture and in-season crop health monitoring, and less in areas such as soil compaction, subsurface drainage, and crop grain quality monitoring. In summary, the literature highlighted that RS technologies can be used to support site-specific management decisions at various stages of crop production, helping to optimize crop production while addressing environmental quality, profitability, and sustainability.


2019 ◽  
Vol 17 (10) ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2015 ◽  
Vol 39 (3) ◽  
pp. 479-490
Author(s):  
Md Rayhan Shaheb ◽  
Mahmudul Islam Nazrul ◽  
MJU Sarker

Global food and feed demands have been projected to double in the 21st century, which will further increase the pressure on the use of land, water and nutrients. To increase food productivity, production potential and economic returns, improvement of cropping system may play a vital role in this regards. A study was conducted to determine the economic consequences of two cropping patterns viz., ICP: Improved Cropping Pattern (Chickpea-T.Aus-T.Aman) and FECP: Farmer’s Existing Cropping Pattern (Fallow-T. Aus-T. Aman) through incorporation of modern high yielding varieties and improved management practices for crop production at farmers' fields of Sylhet during three consecutive years 2009-10, 2010-11, and 2011-12, respectively. The experiment was laid out in randomized complete block design with six dispersed replications. The pooled data showed that the improved management practices for the pattern provided higher yield in T.Aus and T.Aman rice, respectively. The gross return and gross margin of ICP were higher compared to that of FECP with only 21% extra cost. The higher benefit cost ratio (2.20), rice equivalent yield (10.29 t/ha), production efficiency (27.36 kg/ha/day), land-use efficiency (91.32%) and sustainable yield index (0.41) indicated the superiority of the ICP over the FECP. Higher rice equivalent yield indicate that ICP is suitable in Sylhet region for increasing crop productivity and cropping intensity. DOI: http://dx.doi.org/10.3329/bjar.v39i3.21991 Bangladesh J. Agril. Res. 39(3): 479-490, September 2014


Sign in / Sign up

Export Citation Format

Share Document