scholarly journals Androgenesis—Technology for Obtaining Genetically Stable Breeding Material of Capsicum annuum L.

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Dorota Olszewska ◽  
Magdalena Tomaszewska-Sowa

Androgenesis in vitro is a basic method of obtaining haploid plants and DH (doubled haploid) lines of major crops such as potato, rapeseed, tomato, pepper, wheat, maize, and barley, and also many different minor crops and species with lower agricultural impact. Diploid plants appearing among androgenic regenerants are the effect of spontaneous doubling of the chromosome number in haploid cells during an embryo’s early developmental stages and are valuable fully homozygous breeding material. The subject of the presented research is spontaneous diploidization occurring in the development of androgenic, haploid pepper regenerants. In the presented experiment, the formation of diploid seeds was observed in the progeny of an androgenic, haploid plant derived in an anther culture of a hybrid (Capsicum annuum L. ATZ × Capsicum annuum L. `Corno di toro`)F2. Agromorphological and molecular analyses concerned eight diploid plants being progeny of the anther-derived haploid regenerant. Five of the plants constituted a phenotypically balanced group with valuable agromorphological features. Their genetic homogeneity was confirmed using 10 RAPD markers and 16 ISSR markers. Based on the results, it was concluded that anther-derived haploid plants of Capsicum can be the source of diploid, apomictic seeds, and the obtained offspring may constitute genetically stable, valuable breeding material.

2020 ◽  
Vol 4 (2) ◽  
pp. 94-105
Author(s):  
Nida Wafiqah Nabila M Solin ◽  
Dian Adriani ◽  
Zulfahmi Zulfahmi ◽  
Mokhamad Irfan ◽  
Rosmaina Rosmaina

The production of the double haploid plant in vitro through anther culture technique is a plant breeding technique used to obtain pure strain rapidly. A variety of pretreatment has been reported to induce callus and regenerate planlets efficiently. This study aims at describing the influence of cold anther pretreatment towards the callus formation of curly red chili pepper (Capsicum annuum L.). This research was conducted in the laboratory of Genetics and Breeding, Faculty of Agriculture and Animal Science, Universtas Islam Negeri Sultan Syarif Kasim Riau. The explants used are anther of local genotype of curly red chili pepper. The anthers are stored at low temperatures (4 °c) with different time intervals of 0, 24, 48 and 72 hours. The results showed that the percentage of highest callus formation was obtained at 24 and 72 hours length storage, ie 50%. Cold pretreatment of 72 hours anther storage results in a faster callus with a percentage of the highest yellowish white callus color of 17.65% and a compact structure. The cold pretreatment with 72 hours anther storage is the most optimal acceleration in the development stage of anther culture and induces te formation of curly red chili pepper (Capsicum annuum L.) local genotypes.


2010 ◽  
Vol 3 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Mahmoud Otroshy ◽  
Kosar Moradi ◽  
Mojtaba Khayam Nekouei ◽  
Paul C. Struik

2018 ◽  
Vol 27 (6) ◽  
pp. 30-39
Author(s):  
Loreto Robles-Hernández ◽  
Dámaris Leopoldina Ojeda-Barrios ◽  
Ana Cecilia González-Franco ◽  
Jared Hernández-Huerta ◽  
Nora Aideé Salas-Salazar ◽  
...  

En el presente estudio, 10 aislados bacterianos de chile (Capsicum annuum L.) fueron identificados como Xanthomonas campestris pv. vesicatoria; se determinó su patogenicidad en invernadero y se evaluó su susceptibilidad a Streptomyces lydicus y extractos bioactivos de Ganoderma lucidum en condiciones in vitro y de invernadero, utilizando en cada caso un diseño completamente al azar. Todos los aislados causaron infección con una incidencia del 100% y variaciones en su severidad. Aunque todos los aislados fueron susceptibles a los tratamientos biológicos, los extractos bioactivos fueron superiores con un 100% de inhibición in vitro, así como en la reducción de infección foliar y población bacteriana en invernadero. Destacó una correlación fuerte entre población bacteriana e infección foliar (r = 0.9139**) en plantas inoculadas únicamente con el patógeno; en plantas tratadas adicionalmente con los biológicos, solo hubo una correlación débil en cada caso, sugiriendo su efecto benéfico en la supresión de X. campestris pv. vesicatoria.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 681-686 ◽  
Author(s):  
Mohammed Elsayed El-Mahrouk ◽  
Mossad K. Maamoun ◽  
Antar Nasr EL-Banna ◽  
Soliman A. Omran ◽  
Yaser Hassan Dewir ◽  
...  

In vitro ovule culture could be used to generate homozygous lines through the production of haploid plants. The present study reports on in vitro regeneration and production of haploid plants through ovule cultures and identification of the regenerated haploids using flow cytometry. The ovules were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of 6-benzyladenine (BA), kinetin (Kin), 2,4-dichlorophenoxyacetic acid (2,4-D), and naphthalene acetic acid (NAA) at 0, 0.5, 1, and 2 mg·L−1 for their gynogenesis. Among different plant growth regulators (PGRs) tested, 2,4-D at 2 mg·L−1 produced direct gynogenesis. The highest callogenesis percentage (100%) was obtained on MS medium containing 1 mg·L−1 2,4-D and 2 mg·L−1 NAA. Flow cytometry analysis was used to identify the regenerated haploids. It also confirmed gynogenic occurrence at 1 and 2 mg·L−1 2,4-D with percentages of 21.7% and 41%, respectively. Therefore, 2,4-D proved effective for the induction of haploids in black cumin. The regenerated haploids were developed on MS medium without PGRs. The obtained results of in vitro gynogenesis and haploid plant production can tremendously facilitate breeding programs of black cumin.


Antioxidants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 9 ◽  
Author(s):  
Ángela Chu-Puga ◽  
Salvador González-Gordo ◽  
Marta Rodríguez-Ruiz ◽  
José M. Palma ◽  
Francisco J. Corpas

In plants, NADPH oxidase (NOX) is also known as a respiratory burst oxidase homolog (Rboh). This highly important enzyme, one of the main enzymatic sources of superoxide radicals (O2•−), is involved in the metabolism of reactive oxygen and nitrogen species (ROS and RNS), which is active in the non-climacteric pepper (Capsicum annuum L.) fruit. We used sweet pepper fruits at two ripening stages (green and red) to biochemically analyze the O2•−-generating Rboh activity and the number of isozymes during this physiological process. Malondialdehyde (MDA) content, an oxidative stress marker, was also assayed as an index of lipid peroxidation. In red fruits, MDA was observed to increase 2-fold accompanied by a 5.3-fold increase in total Rboh activity. Using in-gel assays of Rboh activity, we identified a total of seven CaRboh isozymes (I–VII) which were differentially modulated during ripening. CaRboh-III and CaRboh-I were the most prominent isozymes in green and red fruits, respectively. An in vitro assay showed that CaRboh activity is inhibited in the presence of nitric oxide (NO) donors, peroxynitrite (ONOO−) and glutathione (GSH), suggesting that CaRboh can undergo S-nitrosation, Tyr-nitration, and glutathionylation, respectively. In summary, this study provides a basic biochemical characterization of CaRboh activity in pepper fruits and indicates that this O2•−-generating Rboh is involved in nitro-oxidative stress associated with sweet pepper fruit ripening.


1996 ◽  
Vol 20 (3) ◽  
pp. 287-293 ◽  
Author(s):  
Marla L. Binzel ◽  
N. Sankhla ◽  
S. Joshi ◽  
D. Sankhla

Sign in / Sign up

Export Citation Format

Share Document