scholarly journals Common Bean Yield and Zinc Use Efficiency in Association with Diazotrophic Bacteria Co-Inoculations

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.

Author(s):  
Sabaï Katé ◽  
Pierre G. Tovihoudji ◽  
Michel Batamoussi-Hermann ◽  
Elvire L. Sossa ◽  
Rodrigue Idohou ◽  
...  

Aims: Investigated the influence of organic manures (municipal solid waste compost [MSWC] and cow dung) and N-fertilizer on growth, yield and nutrient use efficiency of jute mallow (Corchorus olitorius L.) under two water regimes (rain-fed and irrigated). Study Design: Randomized complete block. Place and Duration of Study: Farm of Faculty of Agricultural Sciences, University of Parakou, Northern Benin (latitude 09°20’16.8’’N and longitude 002°38’54’’ E, 353 m asl), during 2013 rainy (June to August) and dry seasons (October to December 2013). Methodology: Ten treatments derived from a factorial combination of five levels of organic manures (control, MSWC at 10 t/ha, MSWC at 20 t/ha, cow dung at 10 t/ha and cow dung at 20 t/ha) and two levels of N-fertilizer (0 kg and 50 kg urea/ha), arranged in a randomized complete block with three replicates were considered. Results: Results showed that water regime significantly (p<.001) affected growth and yield of jute mallow. In addition, the growth and yield parameters showed significant differences (p<.001) in relation to different rates of organic manures.  The integrated use of organic manure and urea increased plant height, number of leaves, stem diameter, number of branches, leaf growth parameters and leaf yield. The maximum amount of leaf yield (7554.88 kg/ha) was obtained with 20 tons/ha of MSWC and 50 kg urea/ha. Conclusion: Fertilizer types also had highly significant effects on nutrient use efficiency. Application of these treatments could help to enhance yield and growth of the jute mallow.


2021 ◽  
Vol 12 ◽  
Author(s):  
Suresh Kumar ◽  
Santosh Kumar ◽  
Trilochan Mohapatra

Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro‐ and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.


2018 ◽  
Vol 10 (1) ◽  
pp. 165-170
Author(s):  
Ankush Ankush ◽  
Vikram Singh ◽  
Vinod Kumar ◽  
Dharam Pal Singh

The primary objective of this review study was to determine the best irrigation and fertilizer scheduling practice in order to achieve maximum yield with maximum water and fertilizer use efficiency and highest nutrient uptake. It is found nutrient use efficiency could be as high as 90 per cent in fertigation as compared to 40 to 60 per cent in conventional methods. The amount of fertilizer lost through leaching can be as low as 10 per cent in fertigation whereas it is 50 per cent in the traditional system. It is observed that irrigation and fertigation scheduled at 75% ET and at 75% RDF, respectively could be a good alternate for saving water and nutrients with enhanced nutrient uptake, growth, yield and quality of crops. In this paper, the literature pertaining to the different aspects of fertigation and irrigation scheduling are reviewed.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


Sign in / Sign up

Export Citation Format

Share Document