scholarly journals Effect of Forage Plant Mixture and Biostimulants Application on the Yield, Changes of Botanical Composition, and Microbiological Soil Activity

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1786
Author(s):  
Waldemar Zielewicz ◽  
Arkadiusz Swędrzyński ◽  
Jakub Dobrzyński ◽  
Dorota Swędrzyńska ◽  
Iryna Kulkova ◽  
...  

Recently, an increasing interest in such fertilizers and fertilization methods which not only directly supply nutrients to plants, but also stimulate soil bioactivity is noted. Their effect on both soil microbiota and forage plants has not been fully recognized. The aim of the study was to investigate the combined effect of forage plant mixture type and mineral fertilizers (NPK) with biostimulants based on a marine algae extracts on the botanical composition, yield, the structure of selected taxonomic and trophic groups of soil microorganisms, and the soil enzymatic activity. During the years 2018–2019 a field experiment established in split-plot design with two different forage plant mixtures, as a first factor, and different fertilization basing on mineral fertilizers amended with biostimulants, as a second factor was conducted. Two types of forage mixtures of sown species were used: grass mixture (GM) and legume-grass mixture (LGM). Every year the following biostimulants were applied: N-14, PinKstart, Physiostart, Physioactive and they were compared with standard NPK fertilisation and no fertilisation as a control. The reaction of forage plant mixtures on applied fertilisation was different. The intensive development of grass species, mainly Lolium perenne, at the expense of Trifolium repens share in LGM was observed. In GM sward dominated Dactylis glomerata. A beneficial effects of biostimulants’ application on the biomass yields of both grass mixtures was observed. The systematic soil acidification and a decrease of soil enzymatic activity in result of applied fertilization, except NPK + Physioactive treatment (calcium fertilizer containing 76% calcium carbonate), was noted. Soil reaction to applied fertilisation was dependent on the botanical composition of the sward. The counts of microorganisms in the soil under LGM were almost two times higher than in the soil under GM. The most effective, in reducing the negative effect of nitrogen mineral fertilization on the pH of soil, was fertilization with NPK + Physioactiv.

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2213
Author(s):  
Barbara Futa ◽  
Piotr Kraska ◽  
Sylwia Andruszczak ◽  
Paweł Gierasimiuk ◽  
Monika Jaroszuk-Sierocińska

Soil biochemical properties shaping soil fertility and agro-ecosystem productivity depend on the reduced tillage system and the dose and method of application of fertilizer; therefore, the research hypothesis put forward proposes that under reduced tillage system conditions, the subsurface application of a multi-component mineral fertilizer would increase soil enzymatic activity, thus favourably influencing the biodiversity of the soil environment. The objective of the three-year study was to evaluate the impact of subsurface application of varying mineral fertilizer rates on soil enzymatic activity under reduced tillage system conditions in soybean, winter wheat and maize rotations. The field experiment was set up as a split-plot design in four replicates. The first experimental factor included two methods of mineral fertilization application: fertilizer broadcast over the soil surface (S); fertilizer applied deep (subsurface placed) using a specially designed cultivator (Sub-S). The other factor was the rates of the mineral fertilizer (NPKS): 85 kg∙ha−1 (F85) and 170 kg∙ha−1 (F170). The method of application and rate of mineral fertilizer did not have a significant effect on the organic carbon and total nitrogen content in the soil of the plots with all rotational crops. Subsurface application of fertilizer significantly increased available phosphorus content in soil under soybean and winter wheat crops; however, it significantly decreased soil pHKCl values within sites with all crops in the rotation compared to surface application. At the same time, deep application of mineral fertilizer significantly stimulated dehydrogenase activity in the soil under the winter wheat crops and acid phosphatase activity in the soil under all rotation crops. The higher level of mineral fertilization contributed to reduction of soil pHKCl under winter wheat and maize, and promoted an increase in the soil P content. Additionally, significant increases of dehydrogenases and urease activity in the soil under winter wheat and maize crops, alkaline phosphatase activity in the soil under all the studied crops, and acid phosphatase activity in the soil under the soybean crops were found, compared to mineral fertilizer in the amount of 85 kg NPKS∙ha−1. The results of the present study have demonstrated a positive effect of subsurface application of compound mineral fertilizer on the soil biochemical parameters in reduced tillage. This may be a recommendation for the subsurface use of multicomponent mineral fertilizers in sustainable agriculture. However, a full objective characterization of the soil environment processes induced by in-depth application of mineral fertilizer in reduced tillage requires long-term monitoring.


2015 ◽  
Vol 6 (3) ◽  
pp. 255 ◽  
Author(s):  
Angélica Bautista-Cruz ◽  
Yolanda Donají Ortíz-Hernández

Enzymes are proteins that catalyze chemical reactions in living systems, transforming specific substrates into the products needed in biological cycles and for many edaphic processes. Soil enzymatic activities have been proposed as soil quality indicators, due to their relation with soil biology. Although the long-term effects of organic and mineral fertilization on physical and chemical soil properties have been previously studied, little is known about their effects on microbial community structure, microbial biomass carbon, microbial activity and enzymatic activity. Some studies report that organic and mineral fertilizers can affect, be it positively or negatively, microbial biomass size as well as soil microbial activity. This work examines the effect of fertilization on the enzymatic activity of soil hydrolases.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1335
Author(s):  
Barbara Symanowicz ◽  
Wojciech Skorupka ◽  
Marcin Becher ◽  
Dawid Jaremko ◽  
Sebastian Krasuski

This study examined changes in soil enzymatic activity caused by constant mineral fertilization with NPK and diversified fertilization with Fe and Mo micronutrients. A field experiment was conducted in a completely randomized design with four replications in Siedlce (central-eastern Poland) between 2012 and 2014. Alfalfa (Medicago sativa L.) was used as the test plant. The first factor consisted of fertilization treatments: control; NPK; NPKFe1; NPKMo1; NPKFe1Mo1; NPKFe2; NPKMo2, and NPKFe2Mo2. The second factor was composed of the time of soil sampling (15 August 2012, 20 September 2012, 17 June 2013, and 20 July 2014). Mineral fertilization was applied: N-20; P-22; K-124.5; Fe1-0.5; Mo1-0.5; Fe2-1.0; Mo2-1.0 kg ha−1. Application of molybdenum (Mo2-1.0 kg ha−1) in alfalfa fertilized with NPK was optimal for obtaining the beneficial nitrogenase activity. The applied NPKFe1Mo1 fertilization in alfalfa cultivation was optimized to achieve high dehydrogenases activity, alkaline phosphatase activity, and acid phosphatase activity. The highest of soil urease activity was determined in soil fertilized with NPKFe2Mo2. The biochemical index (BCHI) of soil fertility reached its highest mean value (254.9) after applying the NPKFe1Mo1. A high BCHI soil fertility index indicates the possibility of generating high alfalfa yields and maintaining good soil culture.


2020 ◽  
pp. 160-168
Author(s):  
I. Senyk

Botanical composition of grasses is one of the most important indicators the biological value and quality of the obtained hay and pasture forage, the longevity of hayfi elds and pastures depend on. The issue of changing the botanical composition of agrophytocenoses is especially important in the context of global climate change, which in recent decades is also manifested in the territory of Ukraine, as it is possible to establish the most adapted species of legumes and cereals to adverse weather conditions and to identify eff ective technological methods of managing these processes for maximum conservation economically valuable species in the herbage. The purpose of the research is to establish the infl uence of diff erent ways of sowing of clover and alfalfa cereal crops agrophytocenoses on the formation of their botanical composition. Field studies have established diff erent eff ects of conventional in-line, cross-section and cross-sectional methods of sowing on the formation of botanical composition of grass mixtures of clover meadow (Trifolium pratense) varieties Sparta and Pavlyna with timothy meadow (Phleum pratense) and fenugreek multifl oral (Lolium multifl orum) and of agrophytocenoses of alfalfa of Sinyukha and Seraphima sowing varieties with reed fire (Festuca arundinacea Schreb) and middle wheatgrass (Elytrigia intermedia). For the average of four years of life of clover and alfalfa cereal crops agrophytocenoses, the highest proportion of legume component was observed with split-cross sowing – 51.6 % for Sparta, 53.1 % for Pavlyna, 60.3 % for Seraphima and 61.6 % for the Sinyukha variety. In the fourth year of life (the third year of use) of sowed leguminous-cereals agrophytocenoses, the preservation of the legume component was 14.6–15.5 % in clover-cereals grass mixtures with the Sparta variety and 16.0–16.8 % with the Pavlyna variety. In alfalfa grasslands, these indicators were 54.0–55.1 % with Seraphim and 55.0–56.2 % with Sinyukha. Among the studied varieties of clover meadow and alfalfa sowing proved better in the conditions of the Forest Steppe of western Pavlyna and Sinyukha. Cross-sectional and divided cross-sectional sowing of legumes and cereals mixtures proved to be better compared to conventional row crops in terms of conservation of economically valuable grass species. Key words: agrophytocenosis, botanical composition, clover meadow, alfalfa sowing, sowing methods.


On the grey forest medium-loamy soil of Vladimir Opolye region we have studied the impact of various methods of basic cultivation and fertilizer systems on the activity of redox and hydrolytic enzymes: ure-ase (nitrogen cycle), invertase (carbon cycle), phosphatase (phosphorus cycle), and catalase, involved in the cycle of carbon in the soil. The second humus horizon with capacity of 19-24cm was found at the depth of 20 - 21 cm on the experimental field. We have studied three modes of basic soil cultivation: an-nual shallow flat plowing (6-8 cm), annual deep flat plowing (20-22 cm), and annual moldboard plowing (20-22 cm) with normal and intensive application of fertilizers. The most enzymatically active layer is 0-20 cm. No relevant difference has been found in the level of enzymes activity between variants of basic soil treatment. Activity of enzymes increases with application of fertilizers on the intensive background. In agrogenic soils, soil enzymatic activity is lower on average by 16-22% compared to the soil of the res-ervoir. The biggest negative transformation of activity has been observed at the urease enzyme (up to 50%). With annual moldboard plowing on the intensive backgroung, enzyme activity has been close to the natural level – 98.4%. Catalise and invertase activity in this case were found to be higher (105 and 116% respectively) than that of natural analogues. Activity of enzymes increases with intensive application of fertilizers as compared with normal background. This is particularly evident with 6-8cm deep beardless plowing and 20-22cm deep moldboard plowing. In general, the obtained biochemical indicators charac-terize the highest environmental sustainability of this variation within our research.


2019 ◽  
Vol 70 (10) ◽  
pp. 3464-3468
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Ilona Katalin Fodor ◽  
Delia Mirela Tit ◽  
Cristian Felix Blidar ◽  
...  

In this paper we provide new data about the soil enzyme activity as a biological process, which is an indicator for impacts of factorial combinations of lime and fertilizers applications. Five plots divided into fifteen subplots were sampled for determination of the enzymatic indicators of soil quality, based on the actual and potential dehydrogenase and catalase activities. The research revealed that limed soil samples, in comparison with unlimed ones, resulted in significantly higher soil enzymatic activities (p[0.05) in the upper (0-20 cm), while in the deeper (20-40 cm) layer, only catalase activity was significantly higher (at least at p[0.02). Mineral fertilization, in comparison with its farmyard manuring, led to an insignificant increase in each of the three enzymatic activities determined, excepting catalase activity which was significantly higher (0.05]p]0.02) in the 0-20 cm layer. Based on the absolute values of the enzymatic activities, the enzymatic indicators of soil quality (EISQ) were calculated. The mineral NPK-fertilization and low dose of lime in the 0-20 cm layer, and mineral NP-fertilization and low dose of lime in the 20-40 cm layer proved to be the best variants of fertilization. The enzymatic indicators of soil quality in these variants reached the highest values: EISQ=0.821 and EISQ=0.889, respectively, indicating the presence of high enzymatic activities. It should be emphasized that a balanced application of lime, mineral fertilizers and farmyard manure leads to the formation of favorable conditions for the development of microorganisms, growth of plants and for an intense and lasting enzymatic activity.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1970
Author(s):  
Barbara Sawicka ◽  
Barbara Krochmal-Marczak ◽  
Piotr Pszczółkowski ◽  
Elżbieta Jolanta Bielińska ◽  
Anna Wójcikowska-Kapusta ◽  
...  

The experiment was conducted between 2015–2017 in the Research Station for Cultivar Testing in Uhnin (51°34′ N, 23°02′ E), in Luvisols developed from sandy loam soils. Soil samples for the tests of enzymatic activity were collected after the crop was harvested. The measurements included: the content of dehydrogenases, phosphatases, urease and protease, as well as total organic carbon, total nitrogen and mineral nitrogen in soil, based on standard methods. The research results point to changes in the enzymatic activity of light soil under the influence of varied nitrogen fertilization. In objects fertilized with this ingredient, the activity of the analysed enzymes was significantly higher than in the control soil, except for combinations fertilised with 150 kg ha−1 N characterised by the highest accumulation of N-NO3− in soil. The activity of dehydrogenases, phosphatases and urease changed as the nitrogen dose increased. The polynomial regression analysis enabled a better understanding of those dependences. In the case of dehydrogenases, phosphatases and urease, a third-degree curvilinear relation of enzymatic activity to nitrogen fertilisation was observed (a fourth-degree relation was found, with a coefficient R2 in those equations amounting to =0.958, 0.977, 0.979, respectively) and in the case of protease activity, a fourth-degree relation, with coefficient R2 = 0.989. However, soil acidity did not have a significant influence on either the enzymatic activity or physico-chemical characteristics of soil under the cultivation of sweet potatoes. The C:N ratio turned out to be significantly negatively related to the content of the enzymes dehydrogenase (Adh), phosphatase (AF), urease (AU) and protease (AP) as well as the content of total nitrogen, especially its ammonium form (N-NH4). The obtained results indicate the usefulness of research on enzymatic activity as an indicator of soil reaction to nitrogen fertilization and will enable maintenance of the optimal biological balance of cultivated soils.


2021 ◽  
Vol 7 (7) ◽  
pp. 73-78
Author(s):  
P. Nabiyeva

The article presents the results of research on the influence of the method of sowing and mineral fertilizers on the indicators of the structure of the yield of seed alfalfa in the Ganja-Gazakh zone of Azerbaijan. It has been established that the method of sowing and mineral fertilization has a positive effect on the indicators of the structure of the yield of seed alfalfa. For each method of sowing and mineral fertilization, alfalfa seeds had a positive effect on the indicators of the yield structure. To obtain irrigated gray-brown soils of high and stable yields of alfalfa seeds, it is necessary to form the density of the herbage of seed crops of 33.8–53.0 productive stems per 1 m of sowing methods 45 cm and the dose of mineral fertilizers N60P90K60 kg/ha active substance in the conditions of the Ganja-Gazakh zone Azerbaijan.


Sign in / Sign up

Export Citation Format

Share Document