scholarly journals Short-Term Decomposition and Nutrient-Supplying Ability of Sewage Sludge Digestate, Digestate Compost, and Vermicompost on Acidic Sandy and Calcareous Loamy Soils

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2249
Author(s):  
Nikolett Uzinger ◽  
Orsolya Szécsy ◽  
Nóra Szűcs-Vásárhelyi ◽  
István Padra ◽  
Dániel Benjámin Sándor ◽  
...  

Organic waste and the compost and vermicompost derived from it may have different agronomic values, but little work is available on this aspect of sewage sludge. A 75-day pot experiment with perennial ryegrass (Lolium perenne) as the test plant aimed to investigate the fertiliser value and organic matter replenishment capacity of digested sewage sludge (DS) and the compost (COM) and vermicompost (VC) made from it, applied in 1% and 3% doses on acidic sand and calcareous loam. The NPK content and availability, changes in organic carbon content and plant biomass, and the efficiency of the amendments as nitrogen fertilisers were investigated. The final average residual carbon content for DS, COM, and VC was 35 ± 34, 85 ± 46, and 55 ± 46%, respectively. The organic carbon mineralisation rate depended on the soil type. The additives induced significant N mineralisation in both soils: the average increment in mineral N content was 1.7 times the total added N on acidic sand and 4.2 times it on calcareous loam for the 1% dose. The agronomic efficiency of COM and VC as fertilisers was lower than that of DS. In the short term, DS proved to be the best fertiliser, while COM was the best for organic matter replenishment.

2015 ◽  
Vol 66 (2) ◽  
pp. 52-56 ◽  
Author(s):  
Edmund Hajduk ◽  
Stanisław Właśniewski ◽  
Ewa Szpunar-Krok

AbstractThe paper presents the results of a 3-year field experiment designed to evaluate the content of organic carbon in brown soil (Haplic Cambisol Dystric) developed from a light loamy sand under legumes cultivation. Experimental factors were: species of legume crop (colorful-blooming pea(Pisum sativum), chickling vetch(Lathyrus sativus), narrow-leafed lupin(Lupinus angustifolius), methods of legumes tillage (legumes in pure culture and in mixture with naked oats) and mineral N fertilization (0, 30, 60, 90 kg N·ha−1). Cultivation of legumes on sandy soil did not result in an increase of organic carbon content in the soil after harvest as compared to the initial situation, i.e. 7.39 vs. 7.76 g·kg−1dry matter (DM), on average, respectively. However, there was the beneficial effect of this group of plants on soil abundance in organic matter, the manifestation of which was higher content of organic carbon in soils after legume harvest as compared to soils with oats grown (7.21 g·kg−1DM, on average). Among experimental crops, cultivation of pea exerted the most positive action to organic carbon content (7.58 g·kg−1, after harvest, on average), whereas narrow-leaved lupin had the least effect on organic carbon content (7.23 g·kg−1, on average). Pure culture and greater intensity of legume cultivation associated with the use of higher doses of mineral nitrogen caused less reduction in organic carbon content in soils after harvest.


2015 ◽  
Vol 72 (7) ◽  
pp. 1234-1242 ◽  
Author(s):  
K. Wada ◽  
N. Takei ◽  
T. Sato ◽  
H. Tsuno

This study aims to explore the influential sources of organic matter in first flush runoff from urban roadways by comparing organic carbon content and particle size distribution in road dust with those from discharge from vehicles during rainfall. Samples on first flush runoff and road dust were collected from urban roadways. In addition, vehicle drainage was assumed to flow from vehicles during rainfall events, so vehicle wash-off water was collected by spraying water onto the top and from the underside of vehicles to simulate accumulation during a vehicle run. In road dust, the organic carbon content in the <0.2 mm fraction was about twice that of the 0.2–2 mm fraction. The particle size distributions of both first flush runoff and vehicle wash-off water were similar, and particles <0.2 mm contributed to over 95% of the total volume. The dissolved organic carbon concentration in the vehicle wash-off water was considerably higher than that in the road dust/water mixture. The total organic carbon content in road dust was positively correlated with annual daily traffic. Therefore, vehicles were thought to strongly influence the nature of road dust.


2017 ◽  
Vol 37 (20) ◽  
Author(s):  
姚旭 YAO Xu ◽  
景航 JING Hang ◽  
梁楚涛 LIANG Chutao ◽  
谷利茶 GU Licha ◽  
王国梁 WANG Guoliang ◽  
...  

2018 ◽  
Vol 189 (2) ◽  
pp. 9 ◽  
Author(s):  
Maxime Debret ◽  
Yoann Copard ◽  
Antonin Van Exem ◽  
Geneviève Bessereau ◽  
Frank Haeseler ◽  
...  

Organic matter studies find an echo within different topics such as biogeochemical cycles, processes occurring in continental surfaces, anthropogenic activities, climate science, earth and planetary sciences, etc. Today’s challenges include finding and developing the most appropriate method(s) supporting the differentiation and characterisation of various types of recalcitrant organic matter in modern environments. In this study, we focus on combustion residues and coals as these two types of organic matter contain a significant amount of so-called recalcitrant organic carbon (black carbon and fossil organic carbon). Both these materials are ubiquitous, broadly stem from the same living organisms and have similar polyaromatic structures. In this respect, we tested a spectrophotometry method, classically used for sedimentology, as a very fast method for preliminary investigations. Analyses were performed with a wide range of standards and referenced samples. The results discriminate three different spectral signatures related to the degree of transformation of organic matter related to the degree of aromaticity (i.e. carbonisation). Using calibration curves, total organic carbon content can be estimated in experimental mixes with mineral matter and in a real context using subsurface sample (Gironville 101 borehole, Paris Basin, France). This method has particularly high sensitivity to very low organic matter content and is shown to be promising for a rapid evaluation of the organic carbon content.


2019 ◽  
Vol 16 (21) ◽  
pp. 4183-4199 ◽  
Author(s):  
Elena Lo Giudice Cappelli ◽  
Jessica Louise Clarke ◽  
Craig Smeaton ◽  
Keith Davidson ◽  
William Edward Newns Austin

Abstract. Fjords have been described as hotspots for carbon burial, potentially playing a key role within the carbon cycle as climate regulators over multiple timescales. Nevertheless, little is known about the long-term fate of the carbon that may become stored in fjordic sediments. One of the main reasons for this knowledge gap is that carbon arriving on the seafloor is prone to post-depositional degradation, posing a great challenge when trying to discriminate between an actual change in the carbon deposition rate and post-depositional carbon loss. In this study, we evaluate the use of modern benthic foraminifera as bio-indicators of organic carbon content in six voes (fjords) on the west coast of Shetland. Benthic foraminifera are known to be sensitive to changes in organic carbon content in the sediments, and changes in their assemblage composition therefore reflect synchronous variations in the quantity and quality of carbon reaching the seafloor. We identified four environments based on the relationship between benthic foraminiferal assemblages and organic carbon content in the sediments: (1) land-locked regions influenced by riverine and/or freshwater inputs of organic matter, namely the head of fjords with a restricted geomorphology; (2) stressed environments with a heavily stratified water column and sediments rich in organic matter of low nutritional value; (3) depositional environments with moderate organic content and mild or episodic current activity; and (4) marginal to coastal settings with low organic content, such as fjords with an unrestricted geomorphology. We conclude that foraminifera potentially provide a tool to disentangle primary organic carbon signals from post-depositional degradation and loss of organic carbon because of their environmental sensitivity and high preservation potential in the sedimentary record.


1965 ◽  
Vol 65 (2) ◽  
pp. 241-243 ◽  
Author(s):  
B. E. Davies ◽  
R. I. Davies

1. Loss of ignition at 450°C. and the organic carbon content of some shale soils are positively correlated (r = +0·99).2. Base exchange capacities and exchangeable cations were determined on soils, treated and untreated with hydrogen peroxide solution.3. Oxidizing the organic matter lessened the exchange capacities of all samples; the exchange capacity of the organic matter varied from 67·5 to 97·0 m-equiv./1OO g. dry material.


Sign in / Sign up

Export Citation Format

Share Document