scholarly journals Negative Pressure Irrigation System Reduces Soil Nitrogen Loss for Lettuce during Greenhouse Production

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2380
Author(s):  
Xiang Gao ◽  
Shuxiang Zhang ◽  
Yanyan Song ◽  
Huaiyu Long

Negative pressure irrigation (NPI) to grow crops reduces the application of fertilizer and water while also promoting yield and quality. However, plantation vegetables usually require a large input of nitrogen (N) fertilizer in a greenhouse setting, which will lower the soil quality and accelerate the emission of greenhouse gases. Therefore, the purpose of this research was to explore planting lettuce under an NPI system that retrenches N fertilizer application and mitigates N2O emissions compared with conventional irrigation (CI). This research proved that under NPI conditions, nitrate and ammonium fluctuated slightly in the soil, stabilizing in the range of 18–28 mg kg−1, while that of CI was 20–55 mg kg−1. The NPI alleviated N2O emissions, and NPI-N150 and NPI-N105 decreased them by 18% and 32%, respectively, compared with those for CI-N150. The main explanation was that the NPI inhibited the formation of NO3−-N, reduced the copies number of AOA and AOB as well as the abundance of Nitrospira in the soil, and weakened the soil nitrate reductase and urease activities. The results of this research provide a reliable scientific method for reducing the use of water and N fertilizer while cultivating lettuce, as well as for reducing N2O emissions from agricultural facilities.

2014 ◽  
Vol 100 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Ulrike Lebender ◽  
Mehmet Senbayram ◽  
Joachim Lammel ◽  
Hermann Kuhlmann

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 353 ◽  
Author(s):  
Xu-Peng Zeng ◽  
Kai Zhu ◽  
Jian-Ming Lu ◽  
Yuan Jiang ◽  
Li-Tao Yang ◽  
...  

Nitrogen (N) plays an important role in sugarcane (Saccharum spp. hybrids) growth and development; however, long-term effects of N application levels on cane and sugar production in different sugarcane cultivars under field conditions remain unclear. In this study, we investigate the agronomic, yield, and quality traits in three sugarcane cultivars (GT11, B9, and ROC22) under different N levels (0, 150, and 300 kg/ha urea) from 2015 to 2019. Continuous four-year field experiments of plant and ratoon crops were carried out by using two-factor split-plot design. The results showed that N fertilizer application improved the tillering rate, stalk diameter, plant height, stalk weight, millable stalks/ha, cane yield, sugar yield and juice rate of cane, and the difference between N application and non-N application was significant. The cane yield, millable stalks/ha, juice rate, and juice gravity purity increased with the increase of N application, but the milled juice brix and sucrose % cane decreased with the increase of N application. The sugar yield was the highest at 150 kg/ha urea application, while the cane yield was the highest at 300 kg/ha urea application. Different N fertilizer application levels significantly regulated the activities of glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) and the contents of chlorophyll and nitrate N in plant leaves, which reflected the regulation in nitrogen metabolism and alteration in dry matter production and distribution, cane yield and sugar accumulation in different sugarcane cultivars. During the four-year experiment duration, the cane yield and sugar yield generally showed ROC22 > B9 > GT11. These data suggested that 300 kg/ha urea application was suitable for the plant and first ratoon crops, and 150 kg/ha urea application was suitable for the second and third ratoon crops. Both cane and sugar yields could be the highest in a four-year production cycle under this circumstance.


Atmosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 181 ◽  
Author(s):  
Baohua Xie ◽  
Jiangxin Gu ◽  
Junbao Yu ◽  
Guangxuan Han ◽  
Xunhua Zheng ◽  
...  

2021 ◽  
Author(s):  
Azeem Tariq ◽  
Klaus Steenberg Larsen ◽  
Line Vinther Hansen ◽  
Lars Stoumann Jensen ◽  
Sander Bruun

<p>Nitrogen (N) fertilization in agricultural soils significantly contributes to the atmospheric increase of nitrous oxide (N<sub>2</sub>O). Application of nitrification inhibitors (NIs) is a promising strategy to mitigate N<sub>2</sub>O emissions and improve N use efficiency in agricultural systems. We studied the effect of 3,4-dimethylpyrazol phosphate (DMPP) as an NI on N<sub>2</sub>O mitigation from soils with spring barley and spring rape. We used both manual and automatic chamber technologies to capture the spatial and temporal dynamics of N<sub>2</sub>O emissions. Intensive manual chamber measurements were conducted two months after fertilization and fortnightly afterwards. A mini-plot experiment with different levels (0 %, 50 %, 100 %, 150 %, and 200 %) of standard N fertilizer application and 100% N with NI was also conducted for two months in soil planted with spring barley. N<sub>2</sub>O emissions were affected by the N amount and by the use of NI. Higher emissions were observed in treatments with high N levels and without NI. The effect of NI in reducing N<sub>2</sub>O emissions from spring barley plots was significant in the small chamber experiments, where NI reduced N<sub>2</sub>O emissions by 47 % in the first two months after fertilization. However, the effect of NI on N<sub>2</sub>O reduction was non-significant in the full-plot chamber experiment for the whole season. In contrast, NI significantly reduced (56 %) the seasonal N<sub>2</sub>O emissions from the soils planted with spring rape. After the initial peaks following the fertilizer application, high N<sub>2</sub>O fluxes were observed following substantial rain events. The continuous flux measurements in automated chambers showed the dynamic of N<sub>2</sub>O changes during the whole season, including some peaks that were unobservable with manual chambers because of the low temporal resolution. The concentration of nitrate was higher in the soils treated with mineral N without NI compared to soils treated with NI, which clearly showed the inhibition of the nitrification process with the application of NI. The grain and biomass yield were not affected by the use of NI. In conclusion, application of NI is an efficient mitigation technology for N2O emissions in the period following the fertilizer application, but had little effect on subsequent emissions following rain events.</p><p>Keywords: nitrification inhibitors, DMPP, nitrous oxide, mitigation, agricultural soils</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 1683
Author(s):  
Gang Zhang ◽  
Dejian Wang ◽  
Yuanchun Yu

Straw retention is a widely used method in rice planting areas throughout China. However, the combined influences of straw retention and nitrogen (N) fertilizer application on greenhouse gas (GHG) fluxes from paddy fields merits significant attention. In this work, we conducted a field experiment in the lower Yangtze River region of China to study the effects of straw retention modes and N fertilizer rates on rice yield, methane (CH4) and nitrous oxide (N2O) emission fluxes, global warming potential (GWP), and greenhouse gas intensity (GHGI) during the rice season. The experiments included six treatments: the recommended N fertilizer—240 kg N·ha−1 with (1) no straw, (2) wheat straw, (3) rice straw, and (4) both wheat and rice straw retentions; in a yearly rice–wheat cropping system (N1, WN1, RN1, and WRN1, respectively); as well as both wheat and rice straw retentions with (5) no N fertilizer and (6) 300 kg N·ha−1 conventional N fertilizer (WRN0, WRN2). The results showed that CH4 emissions were mainly concentrated in the tillering fertilizer stage and accounted for 54.2%–87.5% of the total emissions during the rice season, and N2O emissions were primarily concentrated in the panicle fertilizer stage and accounted for 46.7%–51.4% total emissions. CH4 was responsible for 87.5%–98.5% of the total CH4 and N2O GWP during the rice season, and was the main GHG contributor in the paddy field. Although straw retention reduced N2O emissions from paddy field, it significantly increased CH4 emissions, which resulted in a significant net increase in the total GWP. Compared with the N1 treatment, the total GWP of WN1, WRN1, and RN1 increased by 3.45, 3.73, and 1.62 times, respectively; and the GHGI increased by 3.00, 2.96, and 1.52 times, respectively, so the rice straw retention mode had the smallest GWP and GHGI. Under double-season’s straw retentions, N fertilizer application increased both CH4 and N2O emissions, and the WRN1 treatment not only maintained high rice yield but also significantly reduced the GWP and GHGI by 16.5% and 30.1% (p < 0.05), respectively, relative to the WRN2 treatment. Results from this study suggest that adopting the “rice straw retention + recommended N fertilizer” mode (RN1) in the rice–wheat rotation system prevalent in the lower Yangtze River region will aid in mitigating the contribution of straw retention to the greenhouse effect.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 50
Author(s):  
Cong Wang ◽  
Christoph Schürz ◽  
Ottavia Zoboli ◽  
Matthias Zessner ◽  
Karsten Schulz ◽  
...  

Nitrous oxide (N2O) is a potent greenhouse gas stemming mainly from nitrogen (N)-fertilizer application. It is challenging to quantify N2O emissions from agroecosystems because of the dearth of measured data and high spatial variability of the emissions. The eco-hydrological model SWAT (Soil and Water Assessment Tool) simulates hydrological processes and N fluxes in a catchment. However, the routine for simulating N2O emissions is still missing in the SWAT model. A submodule was developed based on the outputs of the SWAT model to partition N2O from the simulated nitrification by applying a coefficient (K2) and also to isolate N2O from the simulated denitrification (N2O + N2) with a modified semi-empirical equation. The submodule was applied to quantify N2O emissions and N2O emission factors from selected crops in two agricultural catchments by using NH4NO3 fertilizer and the combination of organic N and NO3− fertilizer as N input data. The setup with the combination of organic N and NO3− fertilizer simulated lower N2O emissions than the setup with NH4NO3 fertilizer. When the water balance was simulated well (absolute percentage error <11%), the impact of N fertilizer application on the simulated N2O emissions was captured. More research to test the submodule with measured data is needed.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 545d-545
Author(s):  
D.I. Leskovar ◽  
J.C. Ward ◽  
R.W. Sprague ◽  
A. Meiri

Water pumping restrictions of high-quality irrigation water from underground aquifers is affecting vegetable production in Southwest Texas. There is a need to develop efficient deficit-irrigation strategies to minimize irrigation inputs and maintain crop profitability. Our objective was to determine how growth, yield, and quality of cantaloupe (Cucumis melo L. cv. `Caravelle') are affected by irrigation systems with varying input levels, including drip depth position and polyethylene mulch. Stand establishment systems used were containerized transplants and direct seeding. Field experiments were conducted on a Uvalde silty clay loam soil. Marketable yields increased in the order of pre-irrigation followed by: dry-land conditions, furrow/no-mulch, furrow/mulch, drip-surface (0 cm depth)/mulch, drip-subsurface (10-cm depth)/mulch, and drip-subsurface (30 cm depth)/mulch. Pooled across all drip depth treatments, plants on drip had higher water use efficiency than plants on furrow/no-mulch or furrow/mulch systems. Transplants with drip-surface produced 75% higher total and fruit size No. 9 yields than drip-subsurface (10- or 30-cm depth) during the first harvest, but total yields were unaffected by drip tape position. About similar trends were measured in a subsequent study except for a significant irrigation system (stand establishment interaction for yield. Total yields were highest for transplants on drip-subsurface (10-cm depth) and direct seeded plants on drip-subsurface (10 and 30 cm depth) with mulch.


Sign in / Sign up

Export Citation Format

Share Document