scholarly journals Reduction of Ammonia Emissions from Laying Hen Manure in a Closed Composting Process Using Gas-Permeable Membrane Technology

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2384
Author(s):  
María Soto-Herranz ◽  
Mercedes Sánchez-Báscones ◽  
Juan Manuel Antolín-Rodríguez ◽  
Pablo Martín-Ramos

Nitrogen losses during composting processes lead to emissions problems and reduce the compost fertilizer value. Gas-permeable membranes (GPM) are a promising approach to address the challenge of reducing nitrogen losses in composting processes. This study investigated the applicability of two GPM membrane systems to recover N released during the closed composting process of laying hen manure. The ammonia (NH3) capture process was performed using two different systems over a period of 44 days: the first system (S1) consisted of 120 m of an expanded polytetrafluoroethylene (ePTFE) membrane installed inside a 3.7 m3 portable, closed aerobic composter with forced ventilation; the second system (S2) consisted of 474 m of an ePTFE membrane placed inside as an external module designed for NH3 capture, connected to a closed aerobic composter through a pipe. In both cases, a 1 N H2SO4 acidic NH3 capture solution was circulated inside the membranes at a flow rate of 2.1 L·h−1. The amount of total ammonia nitrogen (TAN) recovered was similar in the two systems (0.61 kg in S1 and 0.65 kg in S2) due to the chosen membrane surface areas, but the TAN recovery rate was six times higher in system S1 (6.9 g TAN·m−2·day−1) than in system S2 (1.9 g TAN·m−2·day−1) due to the presence of a higher NH3 concentration in the air in contact with the membrane. Given that the NH3 concentration in the atmosphere of the membrane compartment directly influences the NH3 capture, better performance of the GPM recovery system may be attained by installing it directly inside the closed aerobic composters. Regardless of the chosen configuration, this technology allows N recovery as a stable and concentrated 1.4% N ammonium salt solution, which can be used for fertigation. The presented GPM systems may be used in community composting systems with low volumes of waste to be treated or in livestock facilities that have implemented best available techniques such as solid–liquid separation or anaerobic digestion, provided that the use of GPM technology in combination with these techniques also contributes to odor mitigation and improves biogas yields.

Environments ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 32 ◽  
Author(s):  
Berta Riaño ◽  
Beatriz Molinuevo-Salces ◽  
Matías B. Vanotti ◽  
María Cruz García-González

Gas-permeable membrane technology is a new strategy to minimize ammonia losses from manure, reducing pollution and recovering N in the form of an ammonium salt fertilizer. In this work, a new operational configuration to recover N using the gas-permeable membrane technology from swine manure was tested in a semi-continuous mode. It treated swine manure with a total ammonia nitrogen (TAN) concentration of 3451 mg L−1. The system was operated with low aeration rate (to raise pH), and with hydraulic retention times (HRT) of seven days (Period I) and five days (Period II) that provided total ammonia nitrogen loading rate (ALR) treatments of 491 and 696 mg TAN per L of reactor per day, respectively. Results showed a uniform TAN recovery rate of 27 g per m2 of membrane surface per day regardless of the ALR applied and the manure TAN concentration in the reactor. TAN removal reached 79% for Period I and 56% for Period II, with 90% of recovery by the membrane in both periods. Water capture in the acidic solution was also uniform during the experimental period. An increase in temperature of 3 °C of the acidic solution relative to the wastewater reduced 34% the osmotic distillation and water dilution of the product. These results suggested that the gas-permeable membrane technology operating in a semi-continuous mode has a great potential for TAN recovery from manure.


2008 ◽  
Vol 16 (4) ◽  
pp. 285-293 ◽  
Author(s):  
Khalil Tubail ◽  
Liming Chen ◽  
Frederick C. Michel ◽  
Harold M. Keener ◽  
Jerome F. Rigot ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 571-578
Author(s):  
Jian Zheng ◽  
Chuanyuan Zhu ◽  
Xingyun Qi ◽  
Peng Xiang ◽  
Yongchun Li ◽  
...  

This study aimed to investigate the material composition and transformation during composting of different kinds of livestock and poultry manures. Fresh cow manure (R1), pig manure (R2), and chicken manure (R3) were used as raw materials, and 10% corn stalk was selected as the leavening agent for aerobic static composting. The following results were obtained. After 30 days of aerobic composting, the mass reduction index of the R1, R2, and R3 piles was 48.94%, 47.94%, and 52.94%, respectively. Especially in the first stage (0–10 days) of the composting reaction, the mass reduction indices of the R1, R2, and R3 piles were significant, which were 21.45%, 22.73%, and 23.73%, respectively. During the composting process, the percentage of dissolved organic carbon in TC showed a downward trend, decreasing to 51.33% ± 1.25%, 57.35% ± 3.21%, and 52.34% ± 2.15%, for R1, R2, and R3, respectively. The percentage of ammonia nitrogen (AN) in total nitrogen (TN) in the piles R1, R2, and R3 first showed an increasing trend and then decreased, showing the highest values of 7.38%, 8.11%, and 9.22%, respectively.


2013 ◽  
Vol 53 (10) ◽  
pp. 1115 ◽  
Author(s):  
M. R. Redding

Ammonia volatilisation from manure materials within poultry sheds can adversely affect production, and also represents a loss of fertiliser value from the spent litter. This study sought to compare the ability of alum and bentonite to decrease volatilisation losses of ammonia from spent poultry litter. An in-vessel volatilisation trial with air flushing, ammonia collection, and ammonia analysis was conducted over 64 days to evaluate the mitigation potential of these two materials. Water-saturated spent litter was incubated at 25°C in untreated condition (control) or with three treatments: an industry-accepted rate of alum [4% Al2(SO4)3·18H2O by dry mass of litter dry mass; ALUM], air-dry bentonite (127% by dry mass; BENT), or water-saturated bentonite (once again at 127% by dry mass; SATBENT). A high proportion of the nitrogen contained in the untreated spent litter was volatilised (62%). Bentonite additions were superior to alum additions at retaining spent litter ammonia (nitrogen losses: 15%, SATBENT; 34%, BENT; 54%, ALUM). Where production considerations favour comparable high rates of bentonite addition (e.g. where the litter is to be re-formulated as a fertiliser), this clay has potential to decrease ammonia volatilisation either in-shed or in spent litter stockpiles or formulated products, without the associated detrimental effect of alum on phosphorus availability.


1973 ◽  
Vol 30 (9) ◽  
pp. 1389-1392 ◽  
Author(s):  
Jan Barica

The method involves an alkalization of a sample to pH 12 and subsequent measurement of liberated un-ionized ammonia with a gas-permeable membrane electrode. Total ammonia is measured directly rather than ammonium ion. Tests on different samples of water from aquaria and fish tanks showed a mean absolute difference of ±8.3% as compared with the phenolhypochlorite method in the concentration range of 0.5–5.1 mg/liter NH3-N. The lowest level of detection was 0.1 mg/liter NH3-N.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 859
Author(s):  
María Soto-Herranz ◽  
Mercedes Sánchez-Báscones ◽  
Juan Manuel Antolín-Rodríguez ◽  
Pablo Martín-Ramos

Gas-permeable membrane (GPM) technology is a possible solution to reduce ammonia (NH3) emissions from livestock housing. This paper presents the results obtained with an NH3-capture prototype based on the use of expanded polytetrafluoroethylene (ePTFE) membranes in real conditions in a gestating sow house and a free-range laying hen house, comparing them with the results obtained in controlled laboratory conditions for the same type of waste. The NH3 present in the air of the livestock housing was captured by reaction with an acidic solution flowing inside the membranes. The periods of continuous operation of the pilot plant were 232 days at the pig farm and 256 days at the poultry farm. The NH3 recovery rate at the end of those periods was 2.3 and 0.4 g TAN·m−2·d−1 in the pig and the poultry farms, respectively. The limiting factor for the capture process was the NH3 concentration in the air, with the highest recovery occurring in the most concentrated atmosphere. Differences in NH3 capture were observed between seasons and farms, with capture efficiencies of 1.62 and 0.33 g·m−2·d−1 in summer and 3.85 and 1.20 g·m−2·d−1 in winter for pig and poultry farms, respectively. The observed differences were mainly due to the higher ventilation frequency in the summer months, which resulted in a lower NH3 concentration inside the houses compared to the winter months. This is especially important when considering the real applicability of this technology. The results obtained suggest that GPM technology holds promise for limiting NH3 emissions from livestock housing with NH3 ambient concentrations close to 20 ppm or as part of manure storage facilities, given that it allows for recovery of nitrogen in a stable and concentrated solution, which can be used as a fertilizer.


Author(s):  
Izabela Anna Tałałaj

Abstract Purpose In this paper the performance and effectiveness of the reverse osmosis (RO) process for the biologically pretreated leachate was investigated. The RO process was carried out separately for two different pH: 8.0 and 9.3. Methods A general pollution parameters as well as organic and inorganic indicators were determined in raw, biologically pretreated and RO treated leachate. The performance characteristics of the reverse osmosis system were made on the basis of permeate flux, electroconductivity removal rate, concentration factor and efficiency in removal of analyzed parameters. Results The use of SBR pretreatment had very good efficiency in BOD (97.3%) and ammonia nitrogen (95.4%) removal. The lowest effectivity was observed for chloride (11.6%), boron (3.9%) and TDS (1.2%). Pretreated leachate was subjected to RO system. The normalized average flux was 0.53 (42.3 L/m2·h) for pH = 8.0 and 0.68 (33.5 L/m2·h) for pH = 9.3. The lower membrane fouling at higher pH can be explained by electrostatic repulsion between the negatively charged membrane surface and organic substances. Independently of the process pH, a two-step membrane fouling was observed. The greatest differences in removal rates were observed for boron, which had a higher retention rate at higher pH, and ammonia nitrogen, whose removal rate decreased at higher pH. The obtained permeate pH after RO process was lower than the feed pH in two analyzed value of pH. Conclusions The higher flux value at pH = 9.3 is result of high content of organic matter in leachate, which is better rejected at higher pH because of higher electrostatic repulsion between organic matter and membrane surface. This indicates that the organic matter content should be taken into account when determining the operating parameters (pH values) of the RO system.


1968 ◽  
Vol 94 (6) ◽  
pp. 1085-1092
Author(s):  
Frank E. Stratton

Sign in / Sign up

Export Citation Format

Share Document