scholarly journals Grass–Legume Mixtures Show Potential to Increase Above- and Belowground Biomass Production for Andean Forage-Based Fallows

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 142
Author(s):  
Katherin Meza ◽  
Steven J. Vanek ◽  
Yulissa Sueldo ◽  
Edgar Olivera ◽  
Raúl Ccanto ◽  
...  

Soils of the Andean highlands are under threat from cropping system intensification. Improved forage-based fallows offer great promise to address this issue, but research is needed to better understand the potential of species mixtures vs. monocultures to support multiple farmer objectives, especially forage production and soil conservation. We used a pot study to quantify above- and belowground biomass production as well as the total N uptake of grass–legume pairs between five grasses: (1) oat (Avena sativa), (2) ryegrass (Lolium multiflorum), (3) festulolium (Lolium × Festuca genera), (4) brome grass (Bromus catharticus), and (5) orchard grass (Dactylis glomerata), and four legumes: (1) vetch (Vicia dasycarpa), (2) red clover (Trifolium pratense), (3) black medic (Medicago lupulina), and (4) alfalfa (Medicago sativa) relative to the performance of each species in monoculture within two soils from the central Peruvian Andes. Grass–legume bicultures demonstrated significant overyielding, producing 65% and 28% more total dry biomass and total N uptake on average than monocultures. Aboveground biomass of bicultures was significantly influenced by the species of legume present, while belowground biomass was more affected by the grass species in the mixture. When evaluating the growth of each species separately, our findings indicate that overyielding was driven more by the enhanced growth of grasses relative to legumes. Our findings indicate that combining key functional groups (e.g., grass and legume, annual and perennial) offers great promise for developing improved fallows for supporting soil health and productivity in Andean agroecosystems.

2001 ◽  
Vol 1 ◽  
pp. 407-414 ◽  
Author(s):  
Scott X. Chang ◽  
Daniel J. Robison

Screening and selecting tree genotypes that are responsive to N additions and that have high nutrient use efficiencies can provide better genetic material for short-rotation plantation establishment. A pot experiment was conducted to test the hypotheses that (1) sweetgum (Liquidambar styraciflua L.) families have different patterns in biomass production and allocation, N uptake, and N use efficiency (NUE), because of their differences in growth strategies, and (2) sweetgum families that are more responsive to N additions will also have greater nutrient use efficiencies. Seedlings from two half-sib families (F10022 and F10023) that were known to have contrasting responses to fertility and other stress treatments were used for an experiment with two levels of N (0 vs. 100 kg N/ha equivalent) and two levels of P (0 vs. 50 kg P/ha equivalent) in a split-plot design. Sweetgum seedlings responded to N and P treatments rapidly, with increases in both size and biomass production, and those responses were greater with F10023 than with F10022. Growth response to N application was particularly strong. N and P application increased the proportional allocation of biomass to leaves. Under increased N supply, P application increased foliar N concentration and content, as well as total N uptake by the seedlings. However, NUE was decreased by N addition and was higher in F10023 than in F10022 when P was not limiting. A better understanding of genotype by fertility interactions is important in selecting genotypes for specific site conditions and for optimizing nutrient use in forestry production.


2013 ◽  
Vol 93 (2) ◽  
pp. 151-160 ◽  
Author(s):  
R. E. Karamanos ◽  
F. C. Stevenson

Karamanos, R. E. and Stevenson, F. C. 2013. Nitrogen fertilizer product and timing alternatives exist for forage production in the Peace region of Alberta. Can. J. Plant Sci. 93: 151–160. Four different N sources [ammonium nitrate (NIT), urea (UR), polymer-coated urea (PCU), and N-(n-butyl) thiophosphoric triamide-treated urea (AGR)] were applied to stands of pure meadow bromegrass (Bromus beibersteinii L.) or a 50:50 smooth bromegrass (Bromus inermis L.)–alfalfa (Medicago sativa L.) mixture in late fall and early spring at four N rates (0, 60, 80 and 100 kg N ha−1) over a 3-yr (2003–2005) period. The N treatments generally increased forage responses, but the response net revenue to N treatment was rarely positive and at times was negative, especially for PCU. On average, PCU resulted in lower yield and protein concentration, lesser N efficiency, and lesser profit relative to other forms of N. This difference was more pronounced in the spring and was less notable at Rycroft, the location with the bromegrass–alfalfa mixture. Also, greater N fertilizer rates increased the yield, protein concentration, total N uptake, and profit for all fertilizer forms. The exceptions to the preceding were N fertilizer rate did not affect forage responses for PCU and at the location with the brome-alfalfa mixture. Urea or AGR provided satisfactory agronomic alternatives to ammonium nitrate when applied in early spring at sufficient rates.


2020 ◽  
Author(s):  
Benjamin M. Delory ◽  
Hannes Schempp ◽  
Sina Maria Spachmann ◽  
Laura Störzer ◽  
Nicole M. van Dam ◽  
...  

AbstractSoil legacies play an important role for the creation of priority effects. However, we still poorly understand to what extent the metabolome found in the soil solution of a plant community is conditioned by its species composition and whether soil chemical legacies affect subsequent species during assembly. To test these hypotheses, we collected soil solutions from forb or grass communities and evaluated how the metabolome of these soil solutions affected the growth, biomass allocation, and functional traits of a forb (Dianthus deltoides) and a grass species (Festuca rubra). Results showed that the metabolomes found in the soil solutions of forb and grass communities differed in composition and chemical diversity. While soil chemical legacies did not have any effect on F. rubra, root foraging by D. deltoides decreased when plants received the soil solution from a grass or a forb community. Structural equation modelling showed that reduced soil exploration by D. deltoides arose via either a root growth-dependent pathway (forb metabolome) or a root trait-dependent pathway (grass metabolome). Reduced root foraging was not connected to a decrease in total N uptake. Our findings reveal that soil chemical legacies can create belowground priority effects by affecting root foraging in later arriving plants.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Olivia E. Saunders ◽  
Ann-Marie Fortuna ◽  
Joe H. Harrison ◽  
Elizabeth Whitefield ◽  
Craig G. Cogger ◽  
...  

We conducted a 3-year field study to determine how raw dairy slurry and anaerobically digested slurry (dairy slurry and food waste) applied via broadcast and subsurface deposition to reed canarygrass (Phalaris arundinacea) affected forage biomass, N uptake, apparent nitrogen recovery (ANR), and soil nitrate concentrations relative to urea. Annual N applications ranged from 600 kg N ha−1in 2009 to 300 g N ha−1in 2011. Forage yield and N uptake were similar across slurry treatments. Soil nitrate concentrations were greatest at the beginning of the fall leaching season, and did not differ among slurry treatments or application methods. Urea-fertilized plots had the highest soil nitrate concentrations but did not consistently have greatest forage biomass. ANR for the slurry treatments ranged from 35 to 70% when calculations were based on ammonium-N concentration, compared with 31 to 65% for urea. Slurry ANR calculated on a total N basis was lower (15 to 40%) due to lower availability of the organic N in the slurries. No consistent differences in soil microbial biomass or other biological indicators were observed. Anaerobically digested slurry supported equal forage production and similar N use efficiency when compared to raw dairy slurry.


2011 ◽  
Vol 62 (8) ◽  
pp. 678 ◽  
Author(s):  
C. P. D. Borger ◽  
G. P. Riethmuller ◽  
A. Hashem

Chloris truncata is a C4 grass species, native to Australia. Within the wheatbelt of Western Australia (WA), it is a weed of grain cropping systems and a beneficial forage species within pasture systems. Plant emergence, density, survival, biomass production, seed production, and seed germinability were investigated, in pasture or cropping systems, at two trial sites (in Merredin, WA) over two years (from 2007 to 2009). Chloris truncata predominantly emerged and set seed during spring and early summer. This species is usually referred to as a short-lived perennial, and could survive for >14 months, but predominantly grew as a spring/summer annual in the WA wheatbelt. Maximum plant density, biomass, and seed production were, respectively, 4.2–28.2 plants/m2, 8.3–146.1 g dry biomass/m2, and 3325–61 383 seeds/m2, depending on location. Cohorts emerging in spring produced more seeds than those that emerged during other seasons. Average seed germinability reached a maximum of 62%, following an initial 3–4-month period of dormancy. There are few herbicides to control plants growing within the winter/spring annual grain crops, and so further research into increased crop competitive ability is required to reduce growth of spring cohorts and potentially reduce seed set. However, the biomass produced by C. truncata (range 0–1460 kg/ha) can be used as forage in a pasture system, or over the summer/autumn feed gap in a cropping system.


2015 ◽  
Vol 17 (2) ◽  
pp. 69 ◽  
Author(s):  
Doso Sarwanto ◽  
Caribu Hadi Prayitno

Indonesia is a country that has a lot of limestone mountains, covering 15.4 million hectares. Limestone mountains have strategic functions as limestone is used as building materials and as raw material in cement industry. Therefore, limestone mining quarry in various areas of limestone mountains in Indonesia is increasingly widespread. The biggest negative impact of limestone mining is the formed open land which is abandoned and unutilized. Changes in the ecosystem will lead to the reduced levels of diversity and productivity of indigenous forage which will ultimately reduce the performance and development of ruminants livestock kept by farmers in the mountainous region of limestone. This study aims to determine the diversity and productivity of indigenous forage on former limestone mining quarry in limestone mountains of southern Gombong. The research was conducted through survey by identifying and measuring the forage production of sample plots assigned purposively. Location of the study was divided into three categories, mild, moderate and heavy mining. Results showed that soil fertility levels in open fields of former limestone mining in southern Gombong mountains are low with total N content of 0.049 - 0.141%, total P2O5 of 0.067 - 0.133% and total K2O of 0.086 - 0.100%. The diversity of indigenous forage on mild mining was more diverse than that of moderate and heavy mining, i.e. 13 species comprising 7 grass species, 2 legumes species, and 4 species of shrubs. The most dominant species in all mining categories are Cynodon dactylon, Imperata cylindrica, Ageratum conyzoides and Mikania micrantha. The results also showed that in the open land of mild mining had the highest production of fresh and dry matter compared to that of moderate and severe mining


2012 ◽  
Vol 63 (6) ◽  
pp. 520 ◽  
Author(s):  
L. H. Tian ◽  
L. W. Bell ◽  
Y. Y. Shen ◽  
J. P. M. Whish

Conventional rainfed mixed crop–livestock systems of western China lack high-quality forage and restrict livestock production. This study explored the forage potential from wheat and its effects on subsequent grain yield. Different cutting times were imposed on winter wheat (Triticum aestivum) at Qingyang, Gansu Province, in two growing seasons, and the effect of nitrogen (N) topdressing rates (0, 60, and 120 kg N/ha) on grain yield recovery was explored. Results showed the potential to produce 0.8–1.6 t DM/ha of wheat forage with high nutritive value when cut before stem elongation (GS 30). In the wetter year, cutting before stem elongation did not delay crop development significantly (<3 days at anthesis and 5 days at maturity), but grain yields were reduced by 17–28% compared with the uncut crop (5.8 t DM/ha), mainly due to reductions in number of spikes per m2 and, consequently, number of grains per m2. In both seasons, more forage biomass was available if crops were cut later than GS 32, but this came with large reductions (>62%) in grain yield and delays in crop development (>9 days or 131 degree-days). Crops cut later than GS 30 had greatly reduced harvest index, tillers per m2, and total N uptake but higher grain protein content. There was no significant effect of N topdressing rate on grain yield, although provided the crop was cut before GS 30, higher rates of N increased maturity biomass and crop N uptake by replacing N removed in cut biomass. This study showed that physiological delay of wheat due to cutting was not significant. The forage harvested from winter wheat before stem elongation could be a valuable feed resource to fill the feed gap in western China.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Biochar ◽  
2021 ◽  
Author(s):  
Jing Peng ◽  
Xiaori Han ◽  
Na Li ◽  
Kun Chen ◽  
Jinfeng Yang ◽  
...  

AbstractCombined application of biochar with fertilizers has been used to increase soil fertility and crop yield. However, the coupling mechanisms through which biochar improves crop yield at field scale and the time span over which biochar affects carbon and nitrogen transformation and crop yield are still little known. In this study, a long-term field trial (2013–2019) was performed in brown soil planting maize. Six treatments were designed: CK—control; NPK—application of chemical fertilizers; C1PK—low biochar without nitrogen fertilizer; C1NPK, C2NPK and C3NPK—biochar at 1.5, 3 and 6 t ha−1, respectively, combined with chemical fertilizers. Results showed that the δ15N value in the topsoil of 0–20 cm layer in the C3NPK treatment reached a peak of 291 ‰ at the third year (2018), and demonstrated a peak of 402 ‰ in the NPK treatment in the initial isotope trial in 2016. Synchronously, SOC was not affected until the third to fourth year after biochar addition, and resulted in a significant increase in total N of 2.4 kg N ha−1 in 2019 in C3NPK treatment. During the entire experiment, the 15N recovery rates of 74–80% were observed highest in the C2NPK and C3NPK treatments, resulting in an annual increase in yields significantly. The lowest subsoil δ15N values ranged from 66‰ to 107‰, and the 15N residual rate would take 70 years for a complete decay to 0.001% in the C3NPK. Our findings suggest that biochar compound fertilizers can increase C stability and N retention in soil and improve N uptake by maize, while the loss of N was minimized. Biochars, therefore, may have an important potential for improving the agroecosystem and ecological balance. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document