scholarly journals Innovative Pulses for Western European Temperate Regions: A Review

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 170
Author(s):  
Alicia Ayerdi Gotor ◽  
Elisa Marraccini

In Europe, there is an increasing interest in pulses both for their beneficial effects in cropping systems and for human health. However, despite these advantages, the acreage dedicated to pulses has been declining and their diversity has reduced, particularly in European temperate regions, due to several social and economic factors. This decline has stimulated a political debate in the EU on the development of plant proteins. By contrast, in Southern countries, a large panel of minor pulses is still cropped in regional patterns of production and consumption. The aim of this paper is to investigate the potential for cultivation of minor pulses in European temperate regions as a complement to common pulses. Our assumption is that some of these crops could adapt to different pedoclimatic conditions, given their physiological adaptation capacity, and that these pulses might be of interest for the development of innovative local food chains in an EU policy context targeting protein autonomy. The research is based on a systematic review of 269 papers retrieved in the Scopus database (1974–2019), which allowed us to identify 41 pulses as candidate species with protein content higher than 20% that are already consumed as food. For each species, the main agronomic (e.g., temperature or water requirements) and nutritional characteristics (e.g., proteins or antinutritional contents) were identified in their growing regions. Following their agronomic characteristics, the candidate crops were confronted with variability in the annual growing conditions for spring crops in Western European temperate areas to determine the earliest potential sowing and latest harvest dates. Subsequently, the potential sum of temperatures was calculated with the Agri4cast database to establish the potential climatic suitability. For the first time, 21 minor pulses were selected to be grown in these temperate areas and appear worthy of investigation in terms of yield potential, nutritional characteristics or best management practices.

Author(s):  
Alicia Ayerdi Gotor ◽  
Elisa Marraccini

In the Global North, there is an increasing interest in pulses both for their beneficial effects in cropping systems and for human health. However, despite these advantages, the acreage dedi-cated to pulses has been declining and their diversity reduced, particularly in European temperate regions, due to several social and economic factors. This decline has stimulated a political debate in the EU on the development of plant proteins. By contrast, in the Global South, a large panel of minor pulses is still cropped in regional patterns of production and consumption. The aim of this paper is to investigate the for cultivation of potential minor pulses in European temperate regions as a complement to common pulses. Our assumption is that some of these crops could adapt to different pedo-climatic conditions, given their physiological adaptation capacity, and that these pulses might be of interest for the development of innovative local food chains in an EU policy context targeting protein autonomy. The research is based on a systematic review of 269 papers retrieved in the Scopus database (1974–2019), which allowed us to identify 41 pulses as candidate species with a protein content higher than 20% that are already consumed as food. For each spe-cies, the main agronomic (e.g. temperature or water requirements) and nutritional characteristics (e.g. proteins or antinutritional contents) were identified in their growing regions. Following their agronomic characteristics, the candidate crops were confronted with variability in the annual growing conditions for spring crops in European temperate areas to determine the earliest poten-tial sowing and latest harvest dates. Subsequently, the potential sum of temperatures was calcu-lated with the Agri4cast database to establish the potential climatic suitability. For the first time, 21 minor pulses were selected to be grown in these temperate areas and appear worthy of inves-tigation in terms of yield potential, nutritional characteristics or best management practices.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Abdullah A. Jaradat

Farmers' decision to adopt new management or production system depends on production risk. Grain yield data was used to assess production risk in a field experiment composed of two cropping systems (CNV and ORG), each with eight subsystems (two levels each of crop rotation (2-yr and 4-yr), tillage management (conventional, CT and strip, ST), and fertilizer input (fertilized, YF and non-fertilized, NF)). Statistical moments, cumulative yield (CY), temporal yield variance (TYV) and coefficient of variation (CV) were used to assess the risk associated with adopting combinations of new management practices in CNV and ORG. The mean-variance-skewness (M-V-S) statistics derived from yield data separated all 16 subsystems into three clusters. Both cropping systems and clustered subsystems differed as to their ability to maintain a constant yield over years, displayed different yield cumulative probabilities, exhibited significant and different M-V-S relationships, and differed as to the reliability of estimating TYV as a function of CY. Results indicated that differences in management among cropping systems and subsystems contributed differently to the goal of achieving yield potential as estimated by the cumulative density function, and that certain low-input management practices caused a positive shift in yield distribution, and may lower TYV and reduce production risk.


2011 ◽  
Vol 25 (1) ◽  
pp. 159-164 ◽  
Author(s):  
Hugh J. Beckie ◽  
K. Neil Harker ◽  
Linda M. Hall ◽  
Frederick A. Holm ◽  
Robert H. Gulden

With increasing incidence of glyphosate-resistant weeds worldwide, greater farmer awareness of the importance of glyphosate stewardship and proactive glyphosate-resistance management is needed. A Web-based decision-support tool (http://www.weedtool.com) comprising 10 questions has been developed primarily for farmers in western Canada to assess the relative risk of selection for glyphosate-resistant weeds on a field-by-field basis. We describe the rationale for the questions and how a response to a particular question influences the risk rating. Practices with the greatest risk weighting in western Canadian cropping systems are lack of crop-rotation diversity (growing mainly oilseeds) and a high frequency of glyphosate-resistant crops in the rotation. Three case scenarios are outlined—low, moderate, and high risk of glyphosate-resistance evolution. Based on the overall risk rating, three best-management practices are recommended to reduce the risk of glyphosate resistance in weeds.


1982 ◽  
Vol 14 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Stan R. Spurlock ◽  
Ivery D. Clifton

Achieving water quality goals will necessitate adoption of best management practices (BMP's) by some or all farmers. Water quality is expected to improve as farmers adopt BMP's such as conservation cropping systems, structural measures, and conservation tillage methods. Currently, there is an absence of pollution abatement incentives strong enough to induce farmers to abate sediment, nutrients, and pesticides to desirable social levels. Although a specific socially optimal level of pollutants may be difficult (or impossible) to quantify, the U.S. Congress, by passing the Federal Water Pollution Control Act Amendments of 1972 (P. L. 92-500), has demonstrated the need for improvements in water quality.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Bradley D. Hanson ◽  
Anil Shrestha ◽  
Dale L. Shaner

Horseweed is an increasing problem in perennial crops and noncrop areas of the Central Valley of California. Similar to the situation in glyphosate-tolerant crops in other regions, glyphosate-based weed-management strategies in perennial crops and noncrop areas have resulted in selection of a glyphosate-resistant horseweed biotype in California. Research was conducted to determine the level of resistance to glyphosate in horseweed using an in vivo enzyme assay and to determine the distribution of the resistant horseweed biotype in central California. The resistant biotype was 4.8-fold more resistant to in vivo glyphosate exposure compared with the susceptible biotype, although enzyme function was inhibited in both biotypes at high glyphosate concentrations. An intermediate in vivo glyphosate dose was used to discriminate between glyphosate-resistant and glyphosate-susceptible individuals in a roadside survey conducted in 2006 to 2007. Overall, 62% of the individuals tested from the Central Valley were classified as resistant to glyphosate. Resistant individuals were found at most locations throughout the Central Valley, although the proportion of resistant individuals was slightly lower in the northern-most area. No correlation could be made between proportion of resistant or susceptible individuals and land use patterns likely because of long-distance seed dispersal or different selection pressure for resistant biotypes on field margins compared with that within fields. Horseweed with an economically significant level of resistance to glyphosate is already widely distributed in the Central Valley of California. Grower awareness of the problem and adoption of best management practices are needed to minimize the effects of horseweed in this highly productive and diverse agricultural region.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 662f-662
Author(s):  
S. B. Sterrett ◽  
D. B. Taylor ◽  
C. W. Coale ◽  
J. W. Mapp

An interdisciplinary approach had been developed to examine the production, economic, and marketing feasibility of new crops. The methodology requires the determination of yield potential and product quality, construction of production budgets, and completion of marketing window analyses. Potential for integration of new crops into the existing farm enterprise is assessed using linear programing techniques that consider labor and equipment constraints, crop rotations and best management practices. Risk analyses consider yield, production costs, and price of both new and traditional crops. By using this method, broccoli has been identified as a potential new crop for eastern Virginia, with labor requirements and slush ice availability being the major constraints to integration into vegetable production in this area.


2016 ◽  
Author(s):  
Keyvan Malek ◽  
Claudio Stockle ◽  
Kiran Chinnayakanahalli ◽  
Roger Nelson ◽  
Mingliang Liu ◽  
...  

Abstract. Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly-coupled framework using the macroscale Variable Infiltration Capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module has been developed for inclusion in this framework. The performance of VIC-CropSyst was evaluated using two flux tower sites located in agricultural fields in the U.S. (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work at regional scales, it also captures field scale processes in agricultural areas. We also evaluated the regional simulations of VIC-CropSyst's ET over the Washington, Idaho and Oregon in the U.S. VIC-CropSyst is being used in conjunction with socio-economic models, river system models and atmospheric models to simulate the feedback processes between regional water availability, agricultural water management decisions and land-atmospheric interactions.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 494
Author(s):  
Jeffrey A. Coulter

Crop production must increase substantially to meet the needs of a rapidly growing human population, but this is constrained by the availability of resources such as nutrients, water, and land. There is also an urgent need to reduce negative environmental impacts from crop production. Collectively, these issues represent one of the greatest challenges of the twenty-first century. Sustainable cropping systems based on ecological principles, appropriate use of inputs, and soil improvement are the core for integrated approaches to solve this grand challenge. This special issue includes several review and original research articles on these topics for an array of cropping systems, which can advise implementation of best management practices and lead to advances in agronomics for sustainable intensification of crop production.


Sign in / Sign up

Export Citation Format

Share Document