scholarly journals Cereal Husks: Versatile Roles in Grain Quality and Seedling Performance

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 172
Author(s):  
Gideon Grafi ◽  
Jeevan R. Singiri

The seed is the fundamental unit of the dispersal of dry, dehiscent fruits, in which the fruit splits open at maturity to allow for seed dispersal. However, dry fruits may be indehiscent and therefore represent the dispersal unit (DU). Cereals possess a one-seeded fruit, whereby the seed coat and the fruit coat are fused together to generate the caryopsis. This caryopsis may be covered by floral bracts to generate two types of DUs, namely florets, whereby the caryopsis is enclosed by the lemma and the palea (e.g., Avenasterilis) or spikelet, whereby the floret(s) is further covered by the glumes (Triticum turgidum var. dicoccoides). Here, we highlight the dead coverings enclosing the caryopsis in cereals, namely the husks as an integral component of the dispersal unit that play multifaceted roles in grain biology. Thus, besides protection and dispersal means, the husks function as a rich maternal supply of proteins and metabolites for enhancing growth and development, combat potential pathogens as well as confer tolerance to abiotic stresses. These attributes might have broad implications for crop performance, plant population dynamics and diversity in ecological systems, and for conservation of genetic resources in seed banks.

2021 ◽  
Vol 5 ◽  
Author(s):  
Zixin Zhang ◽  
Yang Zhang

Abstract Melatonin is an endogenous micromolecular compound of indoleamine with multiple physiological functions in various organisms. In plants, melatonin is involved in growth and development, as well as in responses to biotic and abiotic stresses. Furthermore, melatonin functions in phytohormone-mediated signal transduction pathways. There are multiple melatonin biosynthesis pathways, and the melatonin content in plants is greatly affected by intrinsic genetic characteristics and external environmental factors. Although melatonin biosynthesis has been extensively studied in model plants, it remains uncharacterized in most plants. This article focuses on current knowledge on the biosynthesis, regulation and application of melatonin, particularly for fruit quality and preservation. In addition, it highlights the links between melatonin and other hormones, as well as future research directions.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2238
Author(s):  
Sumi Sarkar ◽  
Marium Khatun ◽  
Farzana Mustafa Era ◽  
A. K. M. Mominul Islam ◽  
Md. Parvez Anwar ◽  
...  

Abiotic stresses varyingly affect the grain composition and quality of food legumes. This paper is aimed at discussing the impact of abiotic stresses on the grain composition and quality of food legumes. As protein is the main grain constituent of food legumes for which it is being consumed by humans as a cheap protein source, abiotic stresses such as heat, cold, drought, salinity and heavy metals alter this grain protein content in different dimensions for different food legumes. Moreover, other valuable constituents such as starch, soluble sugar, oil, fatty acid and fiber content are affected differently by the abiotic stresses. The diverse impact of these abiotic stresses ultimately declines the grain quality and yield of food legumes. As food legumes play a vital role in the nutritional diet of millions of people in the world and are occasionally denoted as the meat of poor people, it is important to recognize that the sustainable production of food legumes, even under various environmental stresses, has the potential to ensure protein security for people globally. Therefore, it has become a necessity to improve the productivity and quality of food legumes under abiotic stresses through proper crop management and improved breeding strategies, thus enhancing food and economic security to the farmers, particularly in the developing countries of the world.


Author(s):  
Isabel Manrique-Gil ◽  
Inmaculada Sánchez-Vicente ◽  
Isabel Torres-Quezada ◽  
Oscar Lorenzo

Abstract Plants are aerobic organisms that have evolved to maintain specific requirements for oxygen (O2), leading to a correct respiratory energy supply during growth and development. There are certain plant developmental cues and biotic or abiotic stress responses where O2 is scarce. This O2 deprivation known as hypoxia may occur in hypoxic niches of plant-specific tissues and during adverse environmental cues such as pathogen attack and flooding. In general, plants respond to hypoxia through a complex reprogramming of their molecular activities with the aim of reducing the impact of stress on their physiological and cellular homeostasis. This review focuses on the fine-tuned regulation of hypoxia triggered by a network of gaseous compounds that includes O2, ethylene, and nitric oxide. In view of recent scientific advances, we summarize the molecular mechanisms mediated by phytoglobins and by the N-degron proteolytic pathway, focusing on embryogenesis, seed imbibition, and germination, and also specific structures, most notably root apical and shoot apical meristems. In addition, those biotic and abiotic stresses that comprise hypoxia are also highlighted.


1995 ◽  
Vol 114 (1) ◽  
pp. 34-39 ◽  
Author(s):  
C.-Y. Liu ◽  
A. J. Rathjen ◽  
K. W. Shepherd ◽  
P. W. Gras ◽  
L. C. Giles

Biologia ◽  
2015 ◽  
Vol 70 (6) ◽  
Author(s):  
Yamilet Coll ◽  
Francisco Coll ◽  
Asunción Amorós ◽  
Merardo Pujol

AbstractBrassinosteroids are plant steroidal compounds involved in many functions related with plant development, metabolism, signalling and defense against a wide range of biotic and abiotic stresses. Plant architecture, which has a major effect on crop yield, is strongly influenced by brassinosteroids action. Brassinosteroids are recognized as key regulators of plant growth and development involved in a broad spectrum of processes at the molecular, cellular, and physiological levels. These roles suggest that many of the constraints of present agricultural production might be alleviated by manipulation of genetic determinants dealing with brassinosteroids, as well as by its exogenous application. Brassinosteroids are natural, nontoxic, non-genotoxic, biosafe, and eco-friendly, and can therefore be used in agriculture and horticulture to improve the growth, yields, quality, and tolerance of various plants to biotic and abiotic stresses. The present paper comprehensively reviews the latest results in the field of brassinosteroids and envisages future impacts in agriculture.


2021 ◽  
Vol 845 (1) ◽  
pp. 012065
Author(s):  
V S Rubets ◽  
V V Pylnev ◽  
I N Voronchihina ◽  
Yu N Kotenko ◽  
D D Taranova

Abstract Creating of populations with wide genotypic diversity is the basis of successful selection of promising lines. This can be achieved by involving breeding material from various ecological and geographical origins, as well as interspecific hybrids, in crossing. 14 spring common wheat (Triticum aestivum L.) varieties of CIMMYT breeding (Mexico) were researched to identify the genetic sources of economically important features. A number of these varieties proved to be the sources of adaptability to biotic and abiotic stresses and high grain quality. The yield properties of the Mexican varieties in the central Russia were at or below the standard – the ‘Zlata ’ wheat variety.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haitao Xing ◽  
Yusong Jiang ◽  
Yong Zou ◽  
Xiaoling Long ◽  
Xiaoli Wu ◽  
...  

Abstract Background AP2/ERF transcription factors (TFs) constitute one of the largest TF families in plants, which play crucial roles in plant metabolism, growth, and development as well as biotic and abiotic stresses responses. Although the AP2/ERF family has been thoroughly identified in many plant species and several AP2/ERF TFs have been functionally characterized, little is known about this family in ginger (Zingiber officinale Roscoe), an important affinal drug and diet vegetable. Recent completion of the ginger genome sequencing provides an opportunity to investigate the expression profiles of AP2/ERF genes in ginger on a genome-wide basis. Results A total of 163 AP2/ERF genes were obtained in the Z.officinale genome and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. Phylogenetic analysis divided them into three subfamilies, of which 35 belonged to the AP2 subfamily, 120 to ERF, three to RAV, and five to Sololist, respectively, which is in accordance with the number of conserved domains and gene structure analysis. A total of 10 motifs were detected in ZoAP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes. The chromosomal localization, gene structure, and conserved protein motif analyses, as well as the characterization of gene duplication events provided deep insight into the evolutionary features of these ZoAP2/ERF genes. The expression profiles derived from the RNA-seq data and quantitative reserve transcription (qRT-PCR) analysis of ZoAP2/ERFs during development and responses to abiotic stresses were investigated in ginger. Conclusion A comprehensive analysis of the AP2/ERF gene expression patterns in various tissues by RNA-seq and qRT-PCR showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminary identified. In additionally, the ZoAP2/ERF family genes that responded to abiotic stresses were also identified. This study is the first time to identify the ZoAP2/ERF family, which contributes to research on evolutionary characteristics and better understanding the molecular basis for development and abiotic stress response, as well as further functional characterization of ZoAP2/ERF genes with an aim of ginger crop improvement.


Author(s):  
Engku Hasmah Engku Abdullah ◽  
Azizah Misran ◽  
Muhammad Nazmin Yaapar ◽  
Mohd Rafii Yusop ◽  
Asfaliza Ramli

Silicon (Si) is a micronutrient that can increase the resistance of certain plants against multiple biotic or abiotic stresses. It is known that Si has a beneficial effect on plant growth, beginning in the soil, which could lead to a good crop yield. Despite its benefits, Si is not listed among the generally essential elements or nutrients for rice production in many countries such as Malaysia. This review discusses the ability to uptake Si and its benefits on rice. Environmental factors affect rice production, and among the factors, high temperature has been shown to disrupt the physiological development of rice grain, which contributes to chalkiness. Chalkiness is an undesirable trait that decreases grain’s value, milling, cooking, and eating quality. The application of Si could ameliorate rice grain quality, thus providing a valuable reference for Si fertiliser use in high-quality rice production. This review also presents an update on the potentials of Si in improving the rice yield and grain quality, including Si’s ability to minimise grain chalkiness. Therefore, it is anticipated that Si applications will increase rice yield and grain quality and help to reduce chalkiness.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8404 ◽  
Author(s):  
Gaofeng Zhang ◽  
Caimeng Yue ◽  
Tingting Lu ◽  
Lirong Sun ◽  
Fushun Hao

Plasma membrane NADPH oxidases, also named respiratory burst oxidase homologues (Rbohs), play pivotal roles in many aspects of growth and development, as well as in responses to hormone signalings and various biotic and abiotic stresses. Although Rbohs family members have been identified in several plants, little is known about Rbohs in Gossypium. In this report, we characterized 13, 13, 26 and 19 Rbohs in G. arboretum, G. raimondii, G. hirsutum and G. barbadense, respectively. These Rbohs were conservative in physical properties, structures of genes and motifs. The expansion and evolution of the Rbohs dominantly depended on segmental duplication, and were under the purifying selection. Transcription analyses showed that GhRbohs were expressed in various tissues, and most GhRbohs were highly expressed in flowers. Moreover, different GhRbohs had very diverse expression patterns in response to ABA, high salinity, osmotic stress and heat stress. Some GhRbohs were preferentially and specifically expressed during ovule growth and fiber formation. These results suggest that GhRbohs may serve highly differential roles in mediating ABA signaling, in acclimation to environmental stimuli, and in fiber growth and development. Our findings are valuable for further elucidating the functions and regulation mechanisms of the Rbohs in adaptation to diverse stresses, and in growth and development in Gossypium.


2019 ◽  
Vol 20 (24) ◽  
pp. 6270 ◽  
Author(s):  
Tao Yang ◽  
Yuke Lian ◽  
Chongying Wang

Strigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms. The α/β hydrolases DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), which act as receptors of SL and KAR, respectively, both interact with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) in order to target SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE/D53 family members for degradation via the 26S proteasome. Recent reports suggest that SLs and/or KARs are also involved in regulating plant responses and adaptation to various abiotic stresses, particularly nutrient deficiency, drought, salinity, and chilling. There is also crosstalk with other hormone signaling pathways, including auxin, gibberellic acid (GA), abscisic acid (ABA), cytokinin (CK), and ethylene (ET), under normal and abiotic stress conditions. This review briefly covers the biosynthetic and signaling pathways of SLs and KARs, compares their functions in plant growth and development, and reviews the effects of any crosstalk between SLs or KARs and other plant hormones at various stages of plant development. We also focus on the distinct responses, adaptations, and regulatory mechanisms related to SLs and/or KARs in response to various abiotic stresses. The review closes with discussion on ways to gain additional insights into the SL and KAR pathways and the crosstalk between these related phytohormones.


Sign in / Sign up

Export Citation Format

Share Document