scholarly journals Impact of Environmental Factors on Seed Germination and Seedling Emergence of White Clover (Trifolium repens L.)

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 190
Author(s):  
Lei Chu ◽  
Yiping Gao ◽  
Lingling Chen ◽  
Patrick E. McCullough ◽  
David Jespersen ◽  
...  

White clover (Trifolium repens L.) is cultivated as a forage crop and planted in various landscapes for soil conservation. There are numerous reports of failed white clover stands each year. A good understanding of the seed germination biology of white clover in relation to environmental factors is essential to achieve successful stand establishment. A series of experiments were conducted to investigate the impacts of light, temperature, planting depth, drought, and salt stress on seed germination and the emergence of white clover. White clover is negatively photoblastic, and seed germination averaged 63 and 66% under light and complete dark conditions 4 weeks after planting (WAP), respectively. Temperature affected the seed germination speed and rate. At 1 WAP, seeds incubated at 15 to 25 °C demonstrated a significantly higher germination rate than the low temperatures at 5 and 10 °C; however, the germination rate did not differ among the temperature treatments at 4 WAP. The results suggest that white clover germination decreases with increasing sowing depths, and the seeds should be sown on the soil surface or shallowly buried at a depth ≤1 cm to achieve an optimal emergence. White clover seeds exhibited high sensitivity to drought and salinity stress. The osmotic potential and NaCl concentration required to inhibit 50% seed germination were −0.19 MPa and 62.4 mM, respectively. Overall, these findings provide quantifiable explanations for inconsistent establishment observed in field conditions. The results obtained in this research can be used to develop effective planting strategies and support the successful establishment of white clover stands.

2020 ◽  
Author(s):  
Lei Chu ◽  
Yiping Gao ◽  
Lingling Chen ◽  
Patrick E. McCullough ◽  
David Jespersen ◽  
...  

AbstractWhite clover (Trifolium repens L.) is cultivated as a forage crop and planted in various landscapes for soil conservation. There are numerous reports of failed white clover stands each year. A good understanding of seed germination biology of white clover in relation to environmental factors is essential to achieve successful stand establishment. A series of experiments were conducted to investigate the impacts of light, temperature, planting depth, drought, and salt stress on seed germination and emergence of white clover. White clover is negatively photoblastic, and seed germination averaged 63 and 66% under light and complete dark conditions at 4 weeks after planting (WAP), respectively. Temperature affected seed germination speed and rate. At 1 WAP, seeds incubated at 15 to 25 °C demonstrated significantly higher germination rate than the low temperatures at 5 and 10 °C; however, the germination rate did not differ among the temperature treatments at 4 WAP. Results suggest that white clover germination decreases with increasing sowing depths and the seeds should be sown on the soil surface or shallowly buried at a depth ≤1 cm to achieve an optimal emergence. White clover seeds exhibited high sensitivity to drought and salinity stress. The osmotic potential and NaCl concentration required to inhibit 50% seed germination was −0.19 MPa and 62.4 mM, respectively. Overall, these findings provide quantifiable explanations for inconsistent establishment observed in field conditions. The findings obtained in this research can be used to develop effective planting strategies and support the successful establishment of white clover stands.


2013 ◽  
Vol 31 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A. Derakhshan ◽  
J. Gherekhloo

Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


2016 ◽  
Vol 30 (2) ◽  
pp. 533-538 ◽  
Author(s):  
Lifeng Wang ◽  
Su Jin ◽  
Lamei Wu ◽  
Xiaomao Zhou ◽  
Xiangying Liu ◽  
...  

Asia minor bluegrass (AmB) is a major weed impacting rapeseed production in Dongting Lake District, China. Growth chamber experiments were conducted to determine the influence of environmental factors on germination and emergence of AmB. The optimum constant temperature for germination was around 20 C. Seeds showed germination percentages above 60% under 22/15 and 24/19 C day/night temperature regimes. Seeds could germinate in the dark, but light exposure significantly enhanced the germination percentage. More than 50% of seeds germinated over a pH range between 4 and 10. Seeds were highly sensitive to osmotic stress, and germination was completely inhibited at an osmotic potential of −0.4 MPa, indicating that it was favored by a moist environment. Increasing salinity reduced germination of AmB seeds from 58% at 0 mM to 13% at 80 mM NaCl. The highest seedling emergence (62%) was observed when seeds were placed on the soil surface, and no seedlings emerged from seeds placed at a depth of 5 cm. This work shows that the climate and soil conditions in Dongting Lake District are suitable for AmB seed germination and that no-till fields, where seeds remain on the soil surface, promote the successful establishment of the weed.


Weed Science ◽  
2020 ◽  
Vol 68 (5) ◽  
pp. 503-509 ◽  
Author(s):  
Jialin Yu ◽  
Shaun M. Sharpe ◽  
Nathan S. Boyd

AbstractExperiments were conducted to determine the effect of various environmental factors and burial depth on germination and seedling emergence of common beggar’s-tick [Bidens alba (L.) DC.] seeds at two different stages of afterripening. Mature B. alba seeds were stored at 4 C for 3 to 5 mo (new seed lot) and 13 to 15 mo (old seed lot) until experiment initiation. Germination exponentially decreased with increasing moisture stress. Germination rate decreased from 87 ± 2.9% to 13 ± 6.1% as osmotic potential decreased from 0 to −0.5 MPa and was completely inhibited at osmotic potentials below −0.83 MPa. A large portion of the new seeds tested positively photoblastic, but seeds that had afterripened for 1 additional year were partially desensitized to the light requirement. New and old seeds still germinated to a greater percentage in the presence of light than under continuous dark at temperatures ranging from 15 to 35 C. Both new and old seeds germinated over a range of temperatures from 5 to 35 C, but the optimum temperatures for germination was 15 to 30 C in the presence of light. Regardless of seed lot, seedling emergence was the greatest when seeds were sown at the soil surface. Seedling emergence was abruptly reduced when burial depth was 1 cm or greater. Based on these results, we conclude that shallow cultivation could effectively suppress this population of B. alba from emerging when incorporated into an integrated control strategy. The information obtained in this research identifies some important factors that facilitate the widespread presence of B. alba in Florida and may contribute to weed management programs.


Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 558-563 ◽  
Author(s):  
Neha Rana ◽  
Barton J. Wilder ◽  
Brent A. Sellers ◽  
Jason A. Ferrell ◽  
Gregory E. MacDonald

Smutgrass is an invasive warm-season perennial bunch-type grass native to tropical Asia. The two varieties of smutgrass prevalent in Florida are small smutgrass and giant smutgrass. Laboratory seed germination experiments were conducted on both smutgrass varieties to determine the effect of various environmental factors on germination and emergence. The average germination rate for both varieties was 88% at 30/20 C day/night temperatures. Seed germination for both varieties was greater under simulated temperature flux than at constant temperatures. Seed of both varieties germinated at four simulated Florida temperature fluxes (22/11, 27/15, 33/24, and 29/19 C day/night), although the germination of small smutgrass and giant smutgrass was reduced at 33/24 and 22/11 C, respectively. Germination of small and giant smutgrass under dark conditions was 27 and 53%, respectively. Both smutgrass varieties germinated over a wide range of pH values. Small and giant smutgrass germination was inhibited at water potentials below −0.2 MPa and when small smutgrass seed was placed below the soil surface. Emergence of giant smutgrass seed did not occur below 3 cm. Both smutgrass varieties germinated over a broad range of environmental conditions, indicating their capability of year-round germination; however, germination is only likely to occur under field conditions during the summer growing season when rainfall is prevalent. These results indicate that both species have the ability to germinate over a wide range of environmental conditions but that germination is inhibited by moisture stress and depth of burial. Considering that giant smutgrass prefers higher temperatures than small smutgrass, the advent of rainfall from June through September is conducive for germination. Practices that focus on the germination pattern of smutgrass could lead to better long-term management of smutgrass in Florida.


Weed Science ◽  
2008 ◽  
Vol 56 (3) ◽  
pp. 383-388 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Experiments were conducted to determine the influence of various environmental factors on seed germination and seedling emergence of eclipta. Seed germination was completely inhibited in the dark, whereas in the light/dark it was 76, 93, and 87% at 25/15, 30/20, and 35/25 C alternating day/night temperatures, respectively. Germination was greater than 80% up to a temperature of 140 C, when seed were placed in an oven for 5 min followed by incubation at 30/20 C for 14 d, but declined progressively with a further increase in exposure temperature with no germination at 200 C. Seed germination was tolerant of salt stress but highly sensitive to water stress. Seed germinated (87 to 93%) over a pH range of 4 to 10. Seedling emergence was greatest (83%) for the seed placed on the soil surface but declined thereafter, and no seedlings emerged from a depth of 0.5 cm. Seedling emergence was slower and lower with the addition of 4 to 6 t ha−1of plant residue. The information gained from this study identifies some of the factors facilitating eclipta becoming a widespread weed in the humid tropics and might contribute to its control.


Weed Science ◽  
2008 ◽  
Vol 56 (4) ◽  
pp. 529-533 ◽  
Author(s):  
Na Rao ◽  
Liyao Dong ◽  
Jun Li ◽  
Hongjun Zhang

The influence of environmental factors on seed germination and seedling emergence of American sloughgrass was studied in laboratory and greenhouse conditions. The optimum temperature for seed germination was 10 C and light was not necessary. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was quite tolerant to salinity: germination occurred even at 160 mM NaCl (36%). More than 80% of seeds germinated at pH values ranging between 4 and 10. Seedling emergence was highest when seeds were placed on the soil surface (91%) but declined with burial depth. Few (3%) seedlings emerged when seeds were planted at a depth of 5 cm. Information gained in this study will lead to a better understanding of the requirements for American sloughgrass germination and emergence.


Sign in / Sign up

Export Citation Format

Share Document