scholarly journals Gene Expression and Carcass Traits Are Different between Different Quality Grade Groups in Red-Faced Hereford Steers

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1910
Author(s):  
Bailey Engle ◽  
Molly Masters ◽  
Jane Ann Boles ◽  
Jennifer Thomson

Fat deposition is important to carcass value and some palatability characteristics. Carcasses with higher USDA quality grades produce more value for producers and processors in the US system and are more likely to have greater eating satisfaction. Using genomics to identify genes impacting marbling deposition provides insight into muscle biochemistry that may lead to ways to better predict fat deposition, especially marbling and thus quality grade. Hereford steers (16) were managed the same from birth through harvest after 270 days on feed. Samples were obtained for tenderness and transcriptome profiling. As expected, steaks from Choice carcasses had a lower shear force value than steaks from Select carcasses; however, steaks from Standard carcasses were not different from steaks from Choice carcasses. A significant number of differentially expressed (DE) genes was observed in the longissimus lumborum between Choice and Standard carcass RNA pools (1257 genes, p < 0.05), but not many DE genes were observed between Choice and Select RNA pools. Exploratory analysis of global muscle tissue transcriptome from Standard and Choice carcasses provided insight into muscle biochemistry, specifically the upregulation of extracellular matrix development and focal adhesion pathways and the downregulation of RNA processing and metabolism in Choice versus Standard. Additional research is needed to explore the function and timing of gene expression changes.

2020 ◽  
Vol 27 (20) ◽  
pp. 3330-3345
Author(s):  
Ana G. Rodríguez-Hernández ◽  
Rafael Vazquez-Duhalt ◽  
Alejandro Huerta-Saquero

Nanomaterials have become part of our daily lives, particularly nanoparticles contained in food, water, cosmetics, additives and textiles. Nanoparticles interact with organisms at the cellular level. The cell membrane is the first protective barrier against the potential toxic effect of nanoparticles. This first contact, including the interaction between the cell membranes -and associated proteins- and the nanoparticles is critically reviewed here. Nanoparticles, depending on their toxicity, can cause cellular physiology alterations, such as a disruption in cell signaling or changes in gene expression and they can trigger immune responses and even apoptosis. Additionally, the fundamental thermodynamics behind the nanoparticle-membrane and nanoparticle-proteins-membrane interactions are discussed. The analysis is intended to increase our insight into the mechanisms involved in these interactions. Finally, consequences are reviewed and discussed.


2021 ◽  
Vol 81 ◽  
pp. 102246
Author(s):  
Zhong-li Liu ◽  
Shuai Wang ◽  
Xue-peng Cai ◽  
Qiao-ying Zeng

2021 ◽  
pp. 1-29
Author(s):  
Charlotte Louise Bagnall ◽  
Claire Louise Fox ◽  
Yvonne Skipper

2015 ◽  
Vol 35 (3) ◽  
pp. 561-571 ◽  
Author(s):  
Wenxian Liu ◽  
Zhengshe Zhang ◽  
Shuangyan Chen ◽  
Lichao Ma ◽  
Hucheng Wang ◽  
...  

2020 ◽  
Vol 3 (4) ◽  
pp. 285-299
Author(s):  
Yang Huang ◽  
Hui Sun ◽  
Hai Yu ◽  
Shaowei Li ◽  
Qingbing Zheng ◽  
...  

Abstract The rapid emergence of Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) as a pandemic that presents an urgent human health crisis. Many SARS-CoV-2 neutralizing antibodies (NAbs) were developed with efficient therapeutic potential. NAbs-based therapeutics against SARS-CoV-2 are being expedited to preclinical and clinical studies with two antibody drugs, LY3819253 (LY-CoV555) and REGN-COV2 (REGN10933 and REGN10987), approved by the US Food and Drug Administration for emergency use authorization for treating COVID-19. In this review, we provide a systemic overview of SARS-CoV-2 specific or cross-reactive NAbs and discuss their structures, functions and neutralization mechanisms. We provide insight into how these NAbs specific recognize the spike protein of SARS-CoV-2 or cross-react to other CoVs. We also summarize the challenges of NAbs therapeutics such as antibody-dependent enhancement and viral escape mutations. Such evidence is urgently needed to the development of antibody therapeutic interventions that are likely required to reduce the global burden of COVID-19.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zi Wang ◽  
Pan Wang ◽  
Yanan Li ◽  
Hongling Peng ◽  
Yu Zhu ◽  
...  

AbstractHematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Li Tong ◽  
◽  
Po-Yen Wu ◽  
John H. Phan ◽  
Hamid R. Hassazadeh ◽  
...  

Abstract To use next-generation sequencing technology such as RNA-seq for medical and health applications, choosing proper analysis methods for biomarker identification remains a critical challenge for most users. The US Food and Drug Administration (FDA) has led the Sequencing Quality Control (SEQC) project to conduct a comprehensive investigation of 278 representative RNA-seq data analysis pipelines consisting of 13 sequence mapping, three quantification, and seven normalization methods. In this article, we focused on the impact of the joint effects of RNA-seq pipelines on gene expression estimation as well as the downstream prediction of disease outcomes. First, we developed and applied three metrics (i.e., accuracy, precision, and reliability) to quantitatively evaluate each pipeline’s performance on gene expression estimation. We then investigated the correlation between the proposed metrics and the downstream prediction performance using two real-world cancer datasets (i.e., SEQC neuroblastoma dataset and the NIH/NCI TCGA lung adenocarcinoma dataset). We found that RNA-seq pipeline components jointly and significantly impacted the accuracy of gene expression estimation, and its impact was extended to the downstream prediction of these cancer outcomes. Specifically, RNA-seq pipelines that produced more accurate, precise, and reliable gene expression estimation tended to perform better in the prediction of disease outcome. In the end, we provided scenarios as guidelines for users to use these three metrics to select sensible RNA-seq pipelines for the improved accuracy, precision, and reliability of gene expression estimation, which lead to the improved downstream gene expression-based prediction of disease outcome.


2019 ◽  
Vol 5 ◽  
Author(s):  
Mary J. Maclean ◽  
W. Walter Lorenz ◽  
Michael T. Dzimianski ◽  
Christopher Anna ◽  
Andrew R. Moorhead ◽  
...  

AbstractLymphatic filariasis (LF) threatens nearly 20% of the world's population and has handicapped one-third of the 120 million people currently infected. Current control and elimination programs for LF rely on mass drug administration of albendazole plus diethylcarbamazine (DEC) or ivermectin. Only the mechanism of action of albendazole is well understood. To gain a better insight into antifilarial drug actionin vivo, we treated gerbils harbouring patentBrugia malayiinfections with 6 mg kg−1DEC, 0.15 mg kg−1ivermectin or 1 mg kg−1albendazole. Treatments had no effect on the numbers of worms present in the peritoneal cavity of treated animals, so effects on gene expression were a direct result of the drug and not complicated by dying parasites. Adults and microfilariae were collected 1 and 7 days post-treatment and RNA isolated for transcriptomic analysis. The experiment was repeated three times. Ivermectin treatment produced the most differentially expressed genes (DEGs), 113. DEC treatment yielded 61 DEGs. Albendazole treatment resulted in little change in gene expression, with only 6 genes affected. In total, nearly 200 DEGs were identified with little overlap between treatment groups, suggesting that these drugs may interfere in different ways with processes important for parasite survival, development, and reproduction.


Sign in / Sign up

Export Citation Format

Share Document