scholarly journals Towards Efficient Early Warning: Pathobiology of African Swine Fever Virus “Belgium 2018/1” in Domestic Pigs of Different Age Classes

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2602
Author(s):  
Jutta Pikalo ◽  
Marie-Eve Schoder ◽  
Julia Sehl-Ewert ◽  
Angele Breithaupt ◽  
Ann Brigitte Cay ◽  
...  

African swine fever (ASF) is one of the most important and devastating viral diseases in wild boar and domestic pigs worldwide. In the absence of vaccines or treatment options, early clinical detection is crucial and requires a sound knowledge of disease characteristics. To provide practitioners and state veterinarians with detailed information, the objective of the present study was to characterize the ASF virus (ASFV) isolate “Belgium 2018/1” in subadult and weaning domestic pigs. To this end, two animal trials were performed. Trial A included eight subadult domestic pigs and trial B five weaner pigs. In general, clinical signs and pathological lesions were in line with previous studies utilizing highly virulent ASF genotype II viruses. However, in trial A, four subadult domestic pigs survived and recovered, pointing to an age-dependent outcome. The long-term fate of these survivors remains under discussion and would need further investigation.

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 177
Author(s):  
Jutta Pikalo ◽  
Paul Deutschmann ◽  
Melina Fischer ◽  
Hanna Roszyk ◽  
Martin Beer ◽  
...  

African swine fever virus (ASFV) causes a hemorrhagic disease in pigs with high socio-economic consequences. To lower the impact of disease incursions, early detection is crucial. In the context of experimental animal trials, we evaluated diagnostic workflows for a high sample throughput in active surveillance, alternative sample matrices for passive surveillance, and lateral flow devices (LFD) for rapid testing. We could demonstrate that EDTA blood is significantly better suited for early ASFV detection than serum. Tissues recommended by the respective diagnostic manuals were in general comparable in their performance, with spleen samples giving best results. Superficial lymph nodes, ear punches, and different blood swabs were also evaluated as potential alternatives. In summary, all matrices yielded positive results at the peak of clinical signs and could be fit for purpose in passive surveillance. However, weaknesses were discovered for some matrices when it comes to the early phase of infection or recovery. The antigen LFD showed variable results with best performance in the clinical phase. The antibody LFD was quite comparable with ELISA systems. Concluding, alternative approaches are feasible but have to be embedded in control strategies selecting test methods and sample materials following a “fit-for-purpose” approach.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 768
Author(s):  
Pedro J. Sánchez-Cordón ◽  
Tobias Floyd ◽  
Daniel Hicks ◽  
Helen R. Crooke ◽  
Stephen McCleary ◽  
...  

The understanding of the pathogenic mechanisms and the clinicopathological forms caused by currently circulating African swine fever virus (ASFV) isolates is incomplete. So far, most of the studies have been focused on isolates classified within genotypes I and II, the only genotypes that have circulated outside of Africa. However, less is known about the clinical presentations and lesions induced by isolates belonging to the other twenty-two genotypes. Therefore, the early clinicopathological identification of disease outbreaks caused by isolates belonging to, as yet, not well-characterised ASFV genotypes may be compromised, which might cause a delay in the implementation of control measures to halt the virus spread. To improve the pathological characterisation of disease caused by diverse isolates, we have refined the macroscopic and histopathological evaluation protocols to standardise the scoring of lesions. Domestic pigs were inoculated intranasally with different doses (high, medium and low) of ASFV isolate Ken05/Tk1 (genotype X). To complement previous studies, the distribution and severity of macroscopic and histopathological lesions, along with the amount and distribution of viral antigen in tissues, were characterised by applying the new scoring protocols. The intranasal inoculation of domestic pigs with high doses of the Ken05/Tk1 isolate induced acute forms of ASF in most of the animals. Inoculation with medium doses mainly induced acute forms of disease. A less severe but longer clinical course, typical of subacute forms, characterised by the presence of more widespread and severe haemorrhages and oedema, was observed in one pig inoculated with the medium dose. The severity of vascular lesions (haemorrhages and oedema) induced by high and medium doses was not associated with the amount of virus antigen detected in tissues, therefore these might be attributed to indirect mechanisms not evaluated in the present study. The absence of clinical signs, lesions and detectable levels of virus genome or antigen in blood from the animals inoculated with the lowest dose ruled out the existence of possible asymptomatic carriers or persistently infected pigs, at least for the 21 days period of the study. The results corroborate the moderate virulence of the Ken05/Tk1 isolate, as well as its capacity to induce both the acute and, occasionally, subacute forms of ASF when high and medium doses were administered intranasally.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Yanyan Zhang ◽  
Junnan Ke ◽  
Jingyuan Zhang ◽  
Huixian Yue ◽  
Teng Chen ◽  
...  

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF) which reaches up to 100% case fatality in domestic pigs and wild boar and causes significant economic losses in the swine industry. Lack of knowledge of the function of ASFV genes is a serious impediment to the development of the safe and effective vaccine. Herein, I267L was identified as a relative conserved gene and an early expressed gene. A recombinant virus (SY18ΔI267L) with I267L gene deletion was produced by replacing I267L of the virulent ASFV SY18 with enhanced green fluorescent protein (EGFP) cassette. The replication kinetics of SY18ΔI267L is similar to that of the parental isolate in vitro. Moreover, the doses of 102.0 TCID50 (n = 5) and 105.0 TCID50 (n = 5) SY18ΔI267L caused virulent phenotype, severe clinical signs, viremia, high viral load, and mortality in domestic pigs inoculated intramuscularly as the virulent parental virus strain. Therefore, the deletion of I267L does not affect the replication or the virulence of ASFV. Utilizing the fluorescent-tagged virulence deletant can be easy to gain a visual result in related research such as the inactivation effect of some drugs, disinfectants, extracts, etc. on ASFV.


2020 ◽  
Vol 94 (14) ◽  
Author(s):  
Pedro J. Sánchez-Cordón ◽  
Tamara Jabbar ◽  
Dave Chapman ◽  
Linda K. Dixon ◽  
María Montoya

ABSTRACT Following short immunization protocols, naturally attenuated African swine fever virus (ASFV) isolate OURT88/3 and deletion mutant BeninΔMGF have previously been shown to induce high percentages of protection in domestic pigs against challenge with virulent virus. The results obtained in the present study show that a single intramuscular immunization of domestic pigs with OURT88/3 or BeninΔMGF followed by a challenge with the virulent Benin 97/1 isolate at day 130 postimmunization did not trigger the mechanisms necessary to generate immunological memory able to induce long-term protection against disease. All pigs developed acute forms of acute swine fever (ASF). Gamma interferon-producing cells peaked at day 24 postimmunization, declining thereafter. Surprisingly, the levels of regulatory T cells (Tregs) and interleukin-10 (IL-10) were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection. IMPORTANCE The duration of immunity for any vaccine candidate is crucial. In the case of African swine fever virus vaccine candidates, this issue has received little attention. Attenuated viruses have proven protective following short immunization protocols in which pigs were challenged a few weeks after the first immunization. Here, the duration of immunity and the immune responses induced over a duration of 130 days were studied during prechallenge and after challenge of pigs immunized with the naturally attenuated isolate OURT88/3 and an attenuated gene-deleted isolate, BeninΔMGF. After a single intramuscular immunization of domestic pigs with the OURT88/3 isolate or BeninΔMGF virus, animals were not protected against challenge with the virulent Benin 97/1 ASFV genotype I isolate at day 130 postimmunization. The levels of regulatory T cells and IL-10 were elevated at the end of the experiment, suggesting that regulatory components of the immune system may inhibit effective protection.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1118 ◽  
Author(s):  
Melina Fischer ◽  
Jane Hühr ◽  
Sandra Blome ◽  
Franz J. Conraths ◽  
Carolina Probst

Europe is currently experiencing a long-lasting African swine fever (ASF) epidemic, both in domestic pigs and wild boar. There is great concern that carcasses of infected wild boar may act as long-term virus reservoirs in the environment. We evaluated the tenacity of ASF virus (ASFV) in tissues and body fluids from experimentally infected domestic pigs and wild boar, which were stored on different matrices and at different temperatures. Samples were analysed at regular intervals for viral genome and infectious virus. ASFV was most stable in spleen or muscles stored at −20 °C and in blood stored at 4 °C. In bones stored at −20 °C, infectious virus was detected for up to three months, and at 4 °C for up to one month, while at room temperature (RT), no infectious virus could be recovered after one week. Skin stored at −20 °C, 4 °C and RT remained infectious for up to three, six and three months, respectively. In urine and faeces, no infectious virus was recovered after one week, irrespective of the matrix. In conclusion, tissues and organs from decomposing carcasses that persist in the environment for a long time can be a source of infection for several months, especially at low temperatures.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Jean N. Hakizimana ◽  
Jean B. Ntirandekura ◽  
Clara Yona ◽  
Lionel Nyabongo ◽  
Gladson Kamwendo ◽  
...  

AbstractSeveral African swine fever (ASF) outbreaks in domestic pigs have been reported in Burundi and Malawi and whole-genome sequences of circulating outbreak viruses in these countries are limited. In the present study, complete genome sequences of ASF viruses (ASFV) that caused the 2018 outbreak in Burundi (BUR/18/Rutana) and the 2019 outbreak in Malawi (MAL/19/Karonga) were produced using Illumina next-generation sequencing (NGS) platform and compared with other previously described ASFV complete genomes. The complete nucleotide sequences of BUR/18/Rutana and MAL/19/Karonga were 176,564 and 183,325 base pairs long with GC content of 38.62 and 38.48%, respectively. The MAL/19/Karonga virus had a total of 186 open reading frames (ORFs) while the BUR/18/Rutana strain had 151 ORFs. After comparative genomic analysis, the MAL/19/Karonga virus showed greater than 99% nucleotide identity with other complete nucleotides sequences of p72 genotype II viruses previously described in Tanzania, Europe and Asia including the Georgia 2007/1 isolate. The Burundian ASFV BUR/18/Rutana exhibited 98.95 to 99.34% nucleotide identity with genotype X ASFV previously described in Kenya and in Democratic Republic of the Congo (DRC). The serotyping results classified the BUR/18/Rutana and MAL/19/Karonga ASFV strains in serogroups 7 and 8, respectively. The results of this study provide insight into the genetic structure and antigenic diversity of ASFV strains circulating in Burundi and Malawi. This is important in order to understand the transmission dynamics and genetic evolution of ASFV in eastern Africa, with an ultimate goal of designing an efficient risk management strategy against ASF transboundary spread.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1474
Author(s):  
Elisabeth Lopez ◽  
Juanita van Heerden ◽  
Laia Bosch-Camós ◽  
Francesc Accensi ◽  
Maria Jesus Navas ◽  
...  

African swine fever (ASF) has become the major threat for the global swine industry. Furthermore, the epidemiological situation of African swine fever virus (ASFV) in some endemic regions of Sub-Saharan Africa is worse than ever, with multiple virus strains and genotypes currently circulating in a given area. Despite the recent advances on ASF vaccine development, there are no commercial vaccines yet, and most of the promising vaccine prototypes available today have been specifically designed to fight the genotype II strains currently circulating in Europe, Asia, and Oceania. Previous results from our laboratory have demonstrated the ability of BA71∆CD2, a recombinant LAV lacking CD2v, to confer protection against homologous (BA71) and heterologous genotype I (E75) and genotype II (Georgia2007/01) ASFV strains, both belonging to same clade (clade C). Here, we extend these results using BA71∆CD2 as a tool trying to understand ASFV cross-protection, using phylogenetically distant ASFV strains. We first observed that five out of six (83.3%) of the pigs immunized once with 106 PFU of BA71∆CD2 survived the tick-bite challenge using Ornithodoros sp. soft ticks naturally infected with RSA/11/2017 strain (genotype XIX, clade D). Second, only two out of six (33.3%) survived the challenge with Ken06.Bus (genotype IX, clade A), which is phylogenetically more distant to BA71∆CD2 than the RSA/11/2017 strain. On the other hand, homologous prime-boosting with BA71∆CD2 only improved the survival rate to 50% after Ken06.Bus challenge, all suffering mild ASF-compatible clinical signs, while 100% of the pigs immunized with BA71∆CD2 and boosted with the parental BA71 virulent strain survived the lethal challenge with Ken06.Bus, without almost no clinical signs of the disease. Our results confirm that cross-protection is a multifactorial phenomenon that not only depends on sequence similarity. We believe that understanding this complex phenomenon will be useful for designing future vaccines for ASF-endemic areas.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hu Suk Lee ◽  
Vuong Nghia Bui ◽  
Duy Tung Dao ◽  
Ngoc Anh Bui ◽  
Thanh Duy Le ◽  
...  

Abstract Background African swine fever (ASF), caused by the ASF virus (ASFV), was first reported in Vietnam in 2019 and spread rapidly thereafter. Better insights into ASFV characteristics and early detection by surveillance could help control its spread. However, the pathogenicity and methods for early detection of ASFV isolates from Vietnam have not been established. Therefore, we investigated the pathogenicity of ASFV and explored alternative sampling methods for early detection. Results Ten pigs were intramuscularly inoculated with an ASFV strain from Vietnam (titer, 103.5 HAD50/mL), and their temperature, clinical signs, and virus excretion patterns were recorded. In addition, herd and environmental samples were collected daily. The pigs died 5–8 days-post-inoculation (dpi), and the incubation period was 3.7 ± 0.5 dpi. ASFV genome was first detected in the blood (2.2 ± 0.8) and then in rectal (3.1 ± 0.7), nasal (3.2 ± 0.4), and oral (3.6 ± 0.7 dpi) swab samples. ASFV was detected in oral fluid samples collected using a chewed rope from 3 dpi. The liver showed the highest viral loads, and ear tissue also exhibited high viral loads among 11 tissues obtained from dead pigs. Overall, ASFV from Vietnam was classified as peracute to acute form. The rope-based oral fluid collection method could be useful for early ASFV detection and allows successful ASF surveillance in large pig farms. Furthermore, ear tissue samples might be a simple alternative specimen for diagnosing ASF infection in dead pigs. Conclusions Our data provide valuable insights into the characteristics of a typical ASFV strain isolated in Vietnam and suggest an alternative, non-invasive specimen collection strategy for early detection.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 255
Author(s):  
Jingyuan Zhang ◽  
Yanyan Zhang ◽  
Teng Chen ◽  
Jinjin Yang ◽  
Huixian Yue ◽  
...  

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a major epidemic disease endangering the swine industry. Although a number of vaccine candidates have been reported, none are commercially available yet. To explore the effect of unknown genes on the biological characteristics of ASFV and the possibility of a gene-deleted isolate as a vaccine candidate, the strain SY18ΔL7-11, with deletions of L7L–L11L genes from ASFV SY18, was constructed, and its biological properties were analyzed. The results show that deletion of genes L7L-L11L did not affect replication of the virus in vitro. Virulence of SY18△L7-11 was significantly reduced, as 11 of the 12 pigs survived for 28 days after intramuscular inoculation with a low dose (103 TCID50) or a high dose (106 TCID50) of SY18ΔL7-11. All 11 surviving pigs were completely protected against challenge with the parental ASFV SY18 on 28 days postinoculation (dpi). Transient fever and/or irregularly low levels of genomic DNA in the blood were monitored in some pigs after inoculation. No ASF clinical signs or viremia were monitored after challenge. Antibodies to ASFV were induced in all pigs from 14 to 21 days postinoculation. IFN-γ was detected in most of the inoculated pigs, which is usually inhibited in ASFV-infected pigs. Overall, the results demonstrate that SY18ΔL7-11 is a candidate for further constructing safer vaccine(s), with better joint deletions of other gene(s) related to virulence.


Sign in / Sign up

Export Citation Format

Share Document