scholarly journals The Use of Olkuska Sheep Milk for the Production of Symbiotic Dairy Ice Cream

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Magdalena Kowalczyk ◽  
Agata Znamirowska ◽  
Małgorzata Pawlos ◽  
Magdalena Buniowska

The aim of this study was to determine the possibility of using Olkuska sheep milk for the production of ice cream with probiotics and prebiotics. The study examined the effect of the storage and type of bacteria used for the fermentation of ice cream mixes and partial replacement of inulin with apple fiber on the physicochemical properties, viability of probiotic cultures and organoleptic properties of sheep’s milk ice cream stored at −22 °C for 21 days. The addition of apple fiber reduced the pH value of ice cream mixes before fermentation. In ice cream mixes and ice cream with apple fiber, the lactic acid content was higher by 0.1–0.2 g L−1 than in their equivalents with inulin only. These differences persisted during the storage of the ice cream. After fermentation of the ice mixes, the bacterial cell count ranged from 10.62 log cfu g−1 to 12.25 log cfu g−1. The freezing process reduced the population of probiotic bacteria cells in ice cream with inulin from 0.8 log cfu g−1 in ice cream with Lactobacillus acidophilus, 1.0 log cfu g−1 in ice cream with Lacticaseibacillus paracasei and 1.1 log cfu g−1 in ice cream with Lacticaseibacillus casei. Freezing the varieties with apple fiber also resulted in a reduction of viable bacterial cells from 0.8 log cfu g−1 in ice cream with L. paracasei and Lb. acidophilus to 1 log cfu g−1 in ice cream with L. casei, compared to the results after fermentation. The highest percentage overrun was determined in ice cream with L. paracasei and Lb. acidophilus. Ice cream with L. casei was characterized by significantly lower overrun on the 7th and 21st days of storage. Although L. paracasei ice cream had the highest overrun, it did not cause a significant reduction in the probiotic population during storage. After seven days of storage, the first drop differed significantly depending on the type of bacteria used for fermentation of the mixture and the addition of apple fiber. L. casei ice cream had a longer first drop time than L. paracasei and Lb. acidophilus ice cream. Partial replacement of inulin with apple fiber resulted in a significant darkening of the color of ice cream mixes. Depending on the type of bacteria used for fermentation, the addition of apple fiber decreased the value of the L* parameter. Ice cream mixes and ice cream with inulin and apple fiber were characterized by a high proportion of yellow. Partial replacement of inulin with apple fiber reduced the hardness of ice cream compared to inulin-only ice cream. Moreover, the panelists found that ice cream with inulin was characterized by a sweeter taste than ice cream with apple fiber. Moreover, the addition of apple fiber favorably increased the flavor and aroma perception of the mango-passion fruit. Therefore, the milk of Olkuska sheep could be successfully used for the production of symbiotic dairy ice cream.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
K. Szajnar ◽  
M. Pawlos ◽  
A. Znamirowska

The global market for sheep’s milk and its products is increasing due to higher demand for cheese and traditional dairy products, and as a novelty, sheep’s milk is an ingredient in infant formulas and nutraceuticals. The aim of this study was to determine the properties of fermented sheep’s milk, which combines probiotic benefits with increased dietary fiber content. The influence of the applied dose of chokeberry fiber on the growth of living cells of Lactobacillus acidophilus and Lactobacillus rhamnosus in fermented sheep’s milk was also evaluated. Sheep milk with the addition of 0% (control sample), 1.5%, and 3.0% chokeberry fiber was fermented by two different probiotic monocultures L. acidophilus and L. rhamnosus. In the fermented milk, pH value, syneresis (%), color, and texture were determined. Furthermore, the microbiological analysis and an organoleptic evaluation were performed. With the increasing dose of chokeberry fiber, the pH value decreased already before the fermentation process. After fermentation, the milk’s pH values with fiber were still lower than those in the control sample. Presumably, more acidic metabolites were produced by L. acidophilus, causing a more intense reduction of the pH value than L. rhamnosus both in control milk and in milk with the addition of fiber. The addition of chokeberry fiber affected the stimulation of the growth of both types of bacteria. In the milk sample without fiber addition, a more significant number of viable cells were counted for L. acidophilus by 0.5 log CFU g-1 more than the milk fermented with L. rhamnosus. Furthermore, in milk fermented by L. acidophilus with 1.5% chokeberry fiber (LA1), the number of viable bacterial cells was higher than that in milk fermented by L. rhamnosus with the same addition of fiber (LR1). However, in sample LA3, the number of viable bacterial cells was lower than that in sample LR3. Tested fermented sheep milk met the Recommendation of the International Dairy Federation’s requirements regarding the number of live bacterial cells for dairy probiotics. The addition of chokeberry fiber increased syneresis in each fermented milk group, regardless of the bacteria used for fermentation. Moreover, the use of fiber caused a significant reduction in brightness L ∗ , an increase of red color, and a decrease of yellow color. Milk fermented with L. acidophilus was characterized by a harder gel, compared to their analogues fermented with L. rhamnosus. The addition of fiber intensified the sour taste and the taste of the additive in both types of fermented sheep milk.


LWT ◽  
2018 ◽  
Vol 92 ◽  
pp. 516-522 ◽  
Author(s):  
Małgorzata Góral ◽  
Katarzyna Kozłowicz ◽  
Urszula Pankiewicz ◽  
Dariusz Góral ◽  
Franciszek Kluza ◽  
...  

2007 ◽  
Vol 13 (4) ◽  
pp. 285-291 ◽  
Author(s):  
C.S. Favaro-Trindade ◽  
J.C. de Carvalho Balieiro ◽  
P. Felix Dias ◽  
F. Amaral Sanino ◽  
C. Boschini

Twelve fermented yellow mombin ice creams were produced with different starter cultures (Lactobacillus acidophilus 74-2, L. acidophilus LAC 4 and yoghurt starter culture), final pH (4.5 and 5) and concentrations of added cream (5 and 10%). Probiotic culture stability, melting properties and sensory acceptance were evaluated in ice cream samples. The mixes were frozen and stored for 105 days at -18°C. The melting rates were lower for samples with a pH of 4.5. Both probiotic cultures resisted the freezing process and, although a tendency for the counts to decrease during storage was detected, they were still higher than 10 6 cfu/g after 105 days, even in products with a pH of 4.5. A pH 4.5, 5% cream and L. acidophilus LAC 4 ice cream received significantly higher sensory scores when compared with pH 5, 10% cream and L. acidophilus 74-2 ice cream. The fermented yellow mombin ice cream was a suitable food for the delivery of L. acidophilus strains, with excellent viability and acceptable sensory characteristics.


2020 ◽  
Vol 14 (3) ◽  
pp. 2147-2156
Author(s):  
Sarmad Ghazi Al-Shawi ◽  
Haider Ibrahim Ali

The study was conducted to prepare control, probiotic (Lactobacillus acidophilus), and synbiotic (L. acidophilus and inulin) ice cream, L. acidophilus content, pH, titratable acidity, sensory properties were evaluated during frozen storage periods. L. acidophilus counts were the higher in synbiotic ice cream, adding inulin to probiotic ice cream enhanced significantly (P<0.05) the content of L. acidophilus. Freezing process caused a decrease in L. acidophilus counts along with storage periods in all the samples of ice cream. Synbiotic ice cream was the lower in pH values and the higher in TA values compared to the other ice cream samples. Synbiotic ice cream was the better in overall acceptance followed by probiotic and control ice cream, respectively. So, ice cream fortification with L. acidophilus probiotic bacteria and prebiotic inulin have a positive influence on all sensory characteristics. Probiotic content of both synbiotic and probiotic ice cream could be considered as functional therapeutic healthy product since it was more than the lowest concentration of probiotic bacteria to provide the beneficial attributes which are 106 cfu/g at the consumption time of the product.


Author(s):  
Magdalena Kowalczyk ◽  
Agata Znamirowska ◽  
Magdalena Buniowska

The aim of the study was to assess the effect of the addition of inulin and the replacement of part of inulin with apple fiber on the physicochemical and organoleptic properties. Moreover, the survival of Bifidobacterium animalis ssp. Lactis Bb-12 and Lactobacillus rhamnosus was studied in sheep milk ice cream. There was no effect of apple fiber and the type of bacteria on the number of bacteria of the probiotics after fermentation. As a result of freezing, mixture containing Bifidobacterium animalis ssp. Lactis Bb-12, there was a significant reduction in the bacterial from 0.39 log cfu g &minus;1 to 0.46 log cfu g &minus;1. In all ice cream on the 21st day of storage, it exceeded 10 log cfu g &ndash;1, which means that the ice cream retained the status of probiotic products. The Lactobacillus rhamnosus ice cream showed a lower yellow colour compared to the Bifidobacterium Bb-12 ice cream. The overrun of sheep's milk ice cream was within a range from 78.50% to 80.41%. The appearance of sheep's milk ice cream is influenced considerably by the addition of fiber and the type of bacteria and the interaction between the type of bacteria and the addition of fiber and storage time and fiber.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1777
Author(s):  
Shaghayegh Haghani ◽  
Milad Hadidi ◽  
Shiva Pouramin ◽  
Fateme Adinepour ◽  
Zahra Hasiri ◽  
...  

In this study, cornelian cherry (Cornus mas L.) peel (CCP) was incorporated into a probiotic ice cream formulation containing Bifidobacterium lactis to investigate the potential effect of CCP on the viability of B. lactis in the ice cream after simulated gastrointestinal stress and during 120 days of storage. Furthermore, the effect of the addition of CCP (3, 6, and 9%) on bioactive compounds, antioxidant activity, and physicochemical and sensory attributes of the ice cream was evaluated. The results showed that the addition of CCP significantly enhanced vitamin C, total polyphenols, total anthocyanin content, and antioxidant activity of the ice cream. During frozen storage of the ice cream, phenolic compounds and anthocyanins were quite stable, but vitamin C significantly decreased. The addition of CCP had no significant effect on the viability of B. lactis throughout the freezing process, but increments of 6% and 9% CCP increased the viability of B. lactis in the ice cream and after simulated gastrointestinal processes in all storage periods. These findings imply that CCP is a promising candidate to be used for producing functional ice cream.


Author(s):  
Reyhan Irkin ◽  
Nihal Yilmaz Ozgur ◽  
Nihal Tas

Lactic acid fermented vegetables are important sources of vitamins and minerals. In recent years consumers demand for non-dairy based functional products has increased. Cabbage pickle has high enough concentrations of fiber and also it may show health effect with the containing high numbers of lactic acid bacteria. The aim of this study is to optimize mathematically cabbage-carrot pickle fermentation for the viability of Lactobacillus acidophilus, Lactobacillus casei cultures and the sensory scores in brine with 5% and 7% (w/v) salt concentrations. Viability optimization of lactic acid bacteria is done via the notion of “fuzzy soft set” method. Lb. casei, Lb. acidophilus, total lactic acid bacteria, Enterobacteriaceae sp., yeast-mould counts and pH values have been reported during the 30 days of storage. The results are compared with the control traditional fermented cabbage-carrot pickle. Organoleptic properties are evaluated. We conclude that the fermented pickle samples contain a significant number of beneficial lactic acid bacteria and high sensory marks at the end of the storage.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aziz Homayouni ◽  
Reza Rezaei Mokarram ◽  
Sharareh Norouzi ◽  
Alireza Dehnad ◽  
Ali Barkhordari ◽  
...  

Purpose Among soy products, soy ice cream with neutral pH, high total solids contents and prebiotic oligosaccharides is an appropriate vehicle for probiotics. The purpose of this paper is to survey soy ice cream as a carrier for the efficient delivering of Lactobacillus casei, or L. casei. Design/methodology/approach Probiotic soy ice cream containing L. casei was produced via the powder of soy milk. The physicochemical and organoleptic properties of the product were assessed. Also, the viability of L. casei was surveyed over a 180-day period of storage at −25 °C. Findings The density characteristic of probiotic soy ice cream demonstrated a significant rise (P < 0.05). The result of the viability analysis showed significant alterations in the number of probiotics in this product after freezing and throughout the 180-day period (P < 0.05). The most noticeable drop was seen throughout the first 60 days about 1.83 logs after that the trend of survival of this probiotic strain leveled off over the next 120 days. Also, no significant differences were found in the organoleptic properties of both ice creams. Originality/value Soy ice cream with prebiotic elements protected the growing and activity of probiotic bacteria. The results showed that L. casei is a good probiotic for soy ice cream.


1991 ◽  
Vol 37 (9) ◽  
pp. 692-696 ◽  
Author(s):  
B. K. Chakrabarti ◽  
P. C. Banerjee

The cell-surface hydrophobicity of acidophilic heterotrophic bacteria originating from mines varied with the pH of the suspending medium and with the growth temperature. Adhesion of these bacterial cells on mineral particles depended upon the hydrophobic (or hydrophilic) nature of both the cells and the minerals. A strong correlation between these properties was usually observed at different pH values of the suspending medium. At a certain pH value, bacterial attachment depended upon the particle size of the minerals. Key words: hydrophobicity, acidophilic bacteria, Acidiphilium cryptum, Acidiphilium symbioticum, adhesion, manganese nodule, chalcopyrite, iron pyrite.


Sign in / Sign up

Export Citation Format

Share Document