scholarly journals Changes of Androstenone Concentrations in Saliva of Boars with Age

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 157
Author(s):  
Kamila Pokorná ◽  
Jaroslav Čítek ◽  
Petr Doležal ◽  
Martyna Małopolska ◽  
Mirosłav Tyra ◽  
...  

With the increasing age of boars, the possibility of androstenone (5α-androst-16-en-3-one (AND), 5α-androst-16-en-3α-ol (α-AND), and 5α-androst-16-en-3β-ol (β-AND)) occurrence increases as well. The aim of this study was to evaluate concentrations of androstenone compounds in the saliva of boars concerning the age of animals. In total, 72 boars were evaluated (24 boars per replication). The effect of age (three different ages—152, 163, and 172 days) was observed, and (Landrace × Large White) × Pietrain genotypes were used. Chemical analysis of saliva samples was conducted by multidimensional gas chromatography/mass spectrometry (MDGC/MS). Salivary α-AND increased with age (p < 0.05), and positive correlations were found between age and submaxillary salivary gland weight (p < 0.05), age, and salivary AND concentration (p < 0.05), body weight and submaxillary salivary gland weight (p < 0.05), submaxillary salivary gland weight and salivary β-AND concentration (p < 0.05), as well as submaxillary salivary gland weight and total salivary 5α-androstenone (AND total) concentration (p < 0.001). Nowadays, animal welfare is becoming a more and more discussed topic, and pig breeding is not an exception. Specifically, the castration ban is a current issue, so it is very important to know as much as possible about compounds responsible for boar taint. Androstenone’s appearance in boars’ saliva could be one of the most important precursors for future early detection of boar taint.

1986 ◽  
Vol 42 (1) ◽  
pp. 145-152 ◽  
Author(s):  
W. D. Booth ◽  
E. Diane Williamson ◽  
R. L. S. Patterson

ABSTRACTFifteen Large White boars were randomly allocated to three groups of five pigs. The boars were slaughtered over a period of time at one of three live weights: group 1 (pork weight), 63 to 68 kg (mean age 141 days), group 2 (bacon weight), 90 to 97 kg (mean age 203 days) and group 3 (heavy weight), 121 to 133 kg (mean age 268 days). Testes, bulbourethral glands, submaxillary salivary glands, blood and thoracic fat were taken from each pig and the glands weighed and steroids determined in extracts of the submaxillary glands, blood plasma and fat. Testosterone and the boar taint steroid, 5a-androstenone (5a-androst-16-en-3-one) were measured in plasma by radioimmunoassay (RIA). 3a-androstenol (5a-androst-16-en-3a-ol) and 5a-androstenone were determined separately in submaxillary glands by gas-liquid chromatography and together semi-quantitatively by a colour reaction. 5a-androstenone was also determined in submaxillary glands by RIA and in fat by enzyme-linked immunosorbent assay. Mean somatic characteristics differed significantly between the groups, but due to the wide variation in steroid concentrations between individual boars, mean differences for steroid concentrations between groups were not significant.Significant positive correlations were found in boars between bulbourethral gland weight, submaxillary gland weight, concentrations of 3a-androstenol and 5a-androstenone in the submaxillary gland and concentrations of free plasma 5a-androstenone and fat 5a-androstenone (P < 0·05). The application of a simple colour reaction to detect readily extractable 16-androstene steroids (16-androstenes) in submaxillary gland tissue is discussed in relation to other methods for determining boar taint.


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 231
Author(s):  
Ines Brinke ◽  
Christine Große-Brinkhaus ◽  
Katharina Roth ◽  
Maren Julia Pröll-Cornelissen ◽  
Sebastian Klein ◽  
...  

The surgical castration of young male piglets without anesthesia is no longer allowed in Germany from 2021. One alternative is breeding against boar taint, but shared synthesis pathways of androstenone (AND) and several endocrine fertility parameters (EFP) indicate a risk of decreasing fertility. The objective of this study was to investigate the genetic background between AND, skatole (SKA), and six EFP in purebred Landrace (LR) and Large White (LW) populations. The animals were clustered according to their genetic relatedness because of their different origins. Estimated heritabilities (h2) of AND and SKA ranged between 0.52 and 0.34 in LR and LW. For EFP, h2 differed between the breeds except for follicle-stimulating hormone (FSH) (h2: 0.28–0.37). Both of the breeds showed unfavorable relationships between AND and testosterone, 17-β estradiol, and FSH. The genetic relationships (rg) between SKA and EFP differed between the breeds. A genome-wide association analysis revealed 48 significant associations and confirmed a region for SKA on Sus Scrofa chromosome (SSC) 14. For EFP, the results differed between the clusters. In conclusion, rg partly confirmed physiologically expected antagonisms between AND and EFP. Particular attention should be spent on fertility traits that are based on EFP when breeding against boar taint to balance the genetic progress in both of the trait complexes.


1985 ◽  
Vol 34 (3) ◽  
pp. 365-365
Author(s):  
R. GUEBLEZ ◽  
J. M. GESTIN ◽  
Geneviève LE HENAFF

1962 ◽  
Vol 203 (4) ◽  
pp. 609-614 ◽  
Author(s):  
A. Van Harreveld ◽  
M. P. Biber

A loss of electrical conductivity after circulatory arrest was observed in the submaxillary salivary gland, liver, kidney, and skeletal muscle. A drop in conductivity of 85–90% of the original value developed in about 0.5 hr in the liver. In the kidney the loss was less severe. Salivary glands lost about 70–80% of their conductivity in 1.5 hr. The losses in muscle conductivity developed late and were not greater than 50%. The drop in conductivity observed in the various organs after circulatory arrest can be accounted for by losses of extracellular electrolytes from the tissues, which could be demonstrated in preparations stained for chloride. In this context the electrolytes in the blood plasma have to be included in the extracellular compartment. The extracellular electrolytes are lost either because they are transported into the intracellular compartment or because they leave the tissue with blood that flows out of the organ after circulatory arrest.


Sign in / Sign up

Export Citation Format

Share Document