scholarly journals Context-Dependent Gestural Laterality: A Multifactorial Analysis in Captive Red-Capped Mangabeys

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 186
Author(s):  
Juliette Aychet ◽  
Noémie Monchy ◽  
Catherine Blois-Heulin ◽  
Alban Lemasson

Catarrhine primates gesture preferentially with their right hands, which led to the hypothesis of a gestural origin of human left-hemispheric specialization for language. However, the factors influencing this gestural laterality remain understudied in non-hominoid species, particularly in intraspecific contexts, although it may bring valuable insights into the proximate and ultimate causes of language lateralization. We present here a preliminary investigation of intraspecific gestural laterality in catarrhine monkeys, red-capped mangabeys (Cercocebus torquatus). We described the spontaneous production of brachio-manual intentional gestures in twenty-five captive subjects. Although we did not evidence any significant gestural lateralization neither at the individual- nor population-level, we found that mangabeys preferentially use their right hands to gesture in negative social contexts, such as aggressions, suggesting an effect of emotional lateralization, and that they adapt to the position of their receiver by preferentially using their ipsilateral hand to communicate. These results corroborate previous findings from ape studies. By contrast, factors related to gesture form and socio-demographic characteristics of signaler and receiver did not affect gestural laterality. To understand better the relationships between gestural laterality and brain lateralization from an evolutionary perspective, we suggest that the gestural communication of other monkey species should be examined with a multifactorial approach.

1981 ◽  
Vol 4 (1) ◽  
pp. 21-22 ◽  
Author(s):  
John L. Bradshaw

Denenberg rightly stresses the importance of studying ethologically meaningful species-specific behavior in animals, and makes the interesting distinction between lateralization at an individual and at a population level. However, in the case of man, I believe Denenberg is wrong in arguing that lateralization in the individual increases with maturation. The overall evidence nowadays tends very much to the contrary. Moreover, with respect to a population, why should it become lateralized? If there is indeed an advantage for the individual in hemispheric specialization, why should the direction of such specialization be so consistent across a majority of individuals, whether human or, as Denenberg points out, other members of the phylum? Is there an evolutionary advantage in most animals' sharing the same direction, or is it a necessary consequence of some other preexisting, more fundamental anatomical, biochemical, or physical property of the organism and its constituents? If the former, why are not all members of the species, rather than just a majority, lateralized in the same direction? (Or, to put it another way, what is the evolutionary advantage to the species or individual of dimorphism, of retaining a minority who polarize in the opposite direction?) If the latter - i.e., if lateralization is a necessary consequence of some prior state - then there should not be any dimorphism, exceptions, or minority members, unless they are somehow disadvantaged in consequence. Indeed, there is some evidence of a cognitive deficit in sinistrals, though it is disputed (see Bradshaw 1980 for review), and others have even suggested that the species as a whole may benefit in some way from such an uneven dimorphism (Levy 1974), but what evidence is there for such propositions with respect to rats, apes, monkeys, or chicks? This is an issue that should be addressed in any general model that includes laterality in animals. [See Corhallis & Morgan: “On the Biological Basis of Human Laterality” BBS 1(2) 1978.]


2005 ◽  
Vol 28 (4) ◽  
pp. 615-623 ◽  
Author(s):  
giorgio vallortigara ◽  
lesley j. rogers

the present response elaborates and defends the main theses advanced in the target article: namely, that in order to provide an evolutionary account of brain lateralization, we should consider advantages and disadvantages associated both with the individual possession of an asymmetrical brain and with the alignment of the direction of lateralization at the population level. we explain why we believe that the hypothesis that directional lateralization evolved as an evolutionarily stable strategy may provide a better account than alternative hypotheses. we also further our discussion of the influence of stimulation and experience in early life on lateralization, and thereby show that our hypothesis is not deterministic. we also consider some novel data and ideas in support of our main thesis.


2017 ◽  
Vol 1 (1) ◽  
pp. 15-31
Author(s):  
Francisco Xavier Morales

The problem of identity is an issue of contemporary society that is not only expressed in daily life concerns but also in discourses of politics and social movements. Nevertheless, the I and the needs of self-fulfillment usually are taken for granted. This paper offers thoughts regarding individual identity based on Niklas Luhmann’s systems theory. From this perspective, identity is not observed as a thing or as a subject, but rather as a “selfillusion” of a system of consciousness, which differentiates itself from the world, event after event, in a contingent way. As concerns the definition  of contents of self-identity, the structures of social systems define who is a person, how he or she should act, and how much esteem he or she should receive. These structures are adopted by consciousness as its own identity structures; however, some social contexts are more relevant for self-identity construction than others. Moral communication increases the probability that structure appropriation takes place, since the emotional element of identity is linked to the esteem/misesteem received by the individual from the interactions in which he or she participates.


2021 ◽  
Vol 75 (3) ◽  
Author(s):  
Nick A. R. Jones ◽  
Helen C. Spence-Jones ◽  
Mike Webster ◽  
Luke Rendell

Abstract Learning can enable rapid behavioural responses to changing conditions but can depend on the social context and behavioural phenotype of the individual. Learning rates have been linked to consistent individual differences in behavioural traits, especially in situations which require engaging with novelty, but the social environment can also play an important role. The presence of others can modulate the effects of individual behavioural traits and afford access to social information that can reduce the need for ‘risky’ asocial learning. Most studies of social effects on learning are focused on more social species; however, such factors can be important even for less-social animals, including non-grouping or facultatively social species which may still derive benefit from social conditions. Using archerfish, Toxotes chatareus, which exhibit high levels of intra-specific competition and do not show a strong preference for grouping, we explored the effect of social contexts on learning. Individually housed fish were assayed in an ‘open-field’ test and then trained to criterion in a task where fish learnt to shoot a novel cue for a food reward—with a conspecific neighbour visible either during training, outside of training or never (full, partial or no visible presence). Time to learn to shoot the novel cue differed across individuals but not across social context. This suggests that social context does not have a strong effect on learning in this non-obligatory social species; instead, it further highlights the importance that inter-individual variation in behavioural traits can have on learning. Significance statement Some individuals learn faster than others. Many factors can affect an animal’s learning rate—for example, its behavioural phenotype may make it more or less likely to engage with novel objects. The social environment can play a big role too—affecting learning directly and modifying the effects of an individual’s traits. Effects of social context on learning mostly come from highly social species, but recent research has focused on less-social animals. Archerfish display high intra-specific competition, and our study suggests that social context has no strong effect on their learning to shoot novel objects for rewards. Our results may have some relevance for social enrichment and welfare of this increasingly studied species, suggesting there are no negative effects of short- to medium-term isolation of this species—at least with regards to behavioural performance and learning tasks.


Ecography ◽  
2021 ◽  
Author(s):  
Philippine Chambault ◽  
Tarek Hattab ◽  
Pascal Mouquet ◽  
Touria Bajjouk ◽  
Claire Jean ◽  
...  

2013 ◽  
Vol 59 (4) ◽  
pp. 485-505 ◽  
Author(s):  
Jon E. Brommer

Abstract Individual-based studies allow quantification of phenotypic plasticity in behavioural, life-history and other labile traits. The study of phenotypic plasticity in the wild can shed new light on the ultimate objectives (1) whether plasticity itself can evolve or is constrained by its genetic architecture, and (2) whether plasticity is associated to other traits, including fitness (selection). I describe the main statistical approach for how repeated records of individuals and a description of the environment (E) allow quantification of variation in plasticity across individuals (IxE) and genotypes (GxE) in wild populations. Based on a literature review of life-history and behavioural studies on plasticity in the wild, I discuss the present state of the two objectives listed above. Few studies have quantified GxE of labile traits in wild populations, and it is likely that power to detect statistically significant GxE is lacking. Apart from the issue of whether it is heritable, plasticity tends to correlate with average trait expression (not fully supported by the few genetic estimates available) and may thus be evolutionary constrained in this way. Individual-specific estimates of plasticity tend to be related to other traits of the individual (including fitness), but these analyses may be anti-conservative because they predominantly concern stats-on-stats. Despite the increased interest in plasticity in wild populations, the putative lack of power to detect GxE in such populations hinders achieving general insights. I discuss possible steps to invigorate the field by moving away from simply testing for presence of GxE to analyses that ‘scale up’ to population level processes and by the development of new behavioural theory to identify quantitative genetic parameters which can be estimated.


2008 ◽  
Vol 364 (1519) ◽  
pp. 861-866 ◽  
Author(s):  
Stefano Ghirlanda ◽  
Elisa Frasnelli ◽  
Giorgio Vallortigara

Recent studies have revealed a variety of left–right asymmetries among vertebrates and invertebrates. In many species, left- and right-lateralized individuals coexist, but in unequal numbers (‘population-level’ lateralization). It has been argued that brain lateralization increases individual efficiency (e.g. avoiding unnecessary duplication of neural circuitry and reducing interference between functions), thus counteracting the ecological disadvantages of lateral biases in behaviour (making individual behaviour more predictable to other organisms). However, individual efficiency does not require a definite proportion of left- and right-lateralized individuals. Thus, such arguments do not explain population-level lateralization. We have previously shown that, in the context of prey–predator interactions, population-level lateralization can arise as an evolutionarily stable strategy when individually asymmetrical organisms must coordinate their behaviour with that of other asymmetrical organisms. Here, we extend our model showing that populations consisting of left- and right-lateralized individuals in unequal numbers can be evolutionarily stable, based solely on strategic factors arising from the balance between antagonistic (competitive) and synergistic (cooperative) interactions.


2017 ◽  
Vol 26 (6) ◽  
pp. 579-583 ◽  
Author(s):  
T. D. Cosco ◽  
K. Howse ◽  
C. Brayne

The extension of life does not appear to be slowing, representing a great achievement for mankind as well as a challenge for ageing populations. As we move towards an increasingly older population we will need to find novel ways for individuals to make the best of the challenges they face, as the likelihood of encountering some form of adversity increases with age. Resilience theories share a common idea that individuals who manage to navigate adversity and maintain high levels of functioning demonstrate resilience. Traditional models of healthy ageing suggest that having a high level of functioning across a number of domains is a requirement. The addition of adversity to the healthy ageing model via resilience makes this concept much more accessible and more amenable to the ageing population. Through asset-based approaches, such as the invoking of individual, social and environmental resources, it is hoped that greater resilience can be fostered at a population level. Interventions aimed at fostering greater resilience may take many forms; however, there is great potential to increase social and environmental resources through public policy interventions. The wellbeing of the individual must be the focus of these efforts; quality of life is an integral component to the enjoyment of additional years and should not be overlooked. Therefore, it will become increasingly important to use resilience as a public health concept and to intervene through policy to foster greater resilience by increasing resources available to older people. Fostering wellbeing in the face of increasing adversity has significant implications for ageing individuals and society as a whole.


2017 ◽  
Author(s):  
Alex Mesoudi

AbstractHow do migration and acculturation (i.e. psychological or behavioral change resulting from migration) affect within- and between-group cultural variation? Here I answer this question by drawing analogies between genetic and cultural evolution. Population genetic models show that migration rapidly breaks down between-group genetic structure. In cultural evolution, however, migrants or their descendants can acculturate to local behaviors via social learning processes such as conformity, potentially preventing migration from eliminating between-group cultural variation. An analysis of the empirical literature on migration suggests that acculturation is common, with second and subsequent migrant generations shifting, sometimes substantially, towards the cultural values of the adopted society. Yet there is little understanding of the individual-level dynamics that underlie these population-level shifts. To explore this formally, I present models quantifying the effect of migration and acculturation on between-group cultural variation, for both neutral and costly cooperative traits. In the models, between-group cultural variation, measured using F statistics, is eliminated by migration and maintained by conformist acculturation. The extent of acculturation is determined by the strength of conformist bias and the number of demonstrators from whom individuals learn. Acculturation is countered by assortation, the tendency for individuals to preferentially interact with culturally-similar others. Unlike neutral traits, cooperative traits can additionally be maintained by payoff-biased social learning, but only in the presence of strong sanctioning institutions. Overall, the models show that surprisingly little conformist acculturation is required to maintain realistic amounts of between-group cultural diversity. While these models provide insight into the potential dynamics of acculturation and migration in cultural evolution, they also highlight the need for more empirical research into the individual-level learning biases that underlie migrant acculturation.


Sign in / Sign up

Export Citation Format

Share Document