scholarly journals Effects of Rhamnolipids on Growth Performance, Immune Function, and Cecal Microflora in Linnan Yellow Broilers Challenged with Lipopolysaccharides

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 905
Author(s):  
Haoran Zhang ◽  
Xiaorong Yu ◽  
Qing Li ◽  
Guangtian Cao ◽  
Jie Feng ◽  
...  

This present study aimed to investigate the effects of rhamnolipids (RLS) on the growth performance, intestinal morphology, immune function, short-chain fatty acid content, and microflora community in broiler chickens challenged with lipopolysaccharides (LPS). A total of 450 broiler chickens were randomly allocated into three groups: basal diet with no supplement (NCO), basal diet with bacitracin (ANT), and basal diet with rhamnolipids (RLS). After 56 d of feeding, 20 healthy broilers were selected from each group, with half being intraperitoneally injected with lipopolysaccharides (LPS) and the other half with normal saline. Treatments with LPS were labelled LPS-NCO, LPS-ANT, and LPS-RLS, whereas treatments with normal saline were labelled NS-NCO, NS-ANT, and NS-RLS. LPS-challenged birds had lower jejunal villus height and higher crypt depth than unchallenged birds. LPS-RLS broilers had increased jejunal villus height and villus height/crypt depth ratio (V/C) but lower crypt depth than LPS-NCO. Dietary supplementation with RLS reduced the LPS-induced immunological stress. Compared with LPS-NCO, birds in LPS-RLS had lower concentrations of IL-1β, IL-6, and TNF-α. In LPS-challenged broilers, RLS and ANT increased the concentrations of IgA, IgM, and IgY compared with LPS-NCO. In LPS treatments, RLS enhanced the contents of acetic acid, butyrate, isobutyric acid, isovalerate, and valerate more than LPS-NCO birds. High-throughput sequencing indicated that RLS supplementation led to changes in the cecal microbial community of broilers. At the species level, Clostridium-sp-Marseille-p3244 and Slakia_eqcsolifaciens were more abundant in NS-RLS than in NS-NCO broilers. In summary, RLS improved the growth performance and relative abundance of cecal microbiota and reduced the LPS-induced immunological stress in broiler chickens.

2021 ◽  
Vol 8 ◽  
Author(s):  
Zehe Song ◽  
Kaihuan Xie ◽  
Yunlu Zhang ◽  
Qian Xie ◽  
Xi He ◽  
...  

The restriction and banning of antibiotics in farm animal feed has led to a search for promising substitutes for antibiotics to promote growth and maintain health for livestock and poultry. Ginsenoside Rg1, which is one of the most effective bioactive components in ginseng, has been reported to have great potential to improve the anti-inflammatory and anti-oxidative status of animals. In this study, 360 Chinese indigenous broiler chickens with close initial body weight were divided into 5 groups. Each group contained 6 replicates and each replicate had 12 birds. The experimental groups were: the control group, fed with the basal diet; the antibiotic group, fed basal diet + 300 mg/kg 15% chlortetracycline; and three Rg1 supplementation groups, fed with basal diet + 100, 200, and 300 mg/kg ginsenoside Rg1, respectively. The growth performance, immune function, and intestinal health of birds were examined at early (day 1–28) and late (day 29–51) stages. Our results showed that dietary supplementation of 300 mg/kg ginsenoside Rg1 significantly improved the growth performance for broilers, particularly at the late stage, including an increase in final body weight and decrease of feed conversion ratio (P < 0.05). Additionally, the integrity of intestinal morphology (Villus height, Crypt depth, and Villus height/Crypt depth) and tight junction (ZO-1 and Occludin), and the secretion of sIgA in the intestine were enhanced by the supplementation of Rg1 in chicken diet (P < 0.05). The immune organ index showed that the weight of the thymus, spleen, and bursa was significantly increased at the early stage in ginsenoside Rg1 supplementation groups (P < 0.05). Our findings might demonstrate that ginsenoside Rg1 could serve as a promising antibiotic alternative to improve the growth performance and gut health for broiler chickens mainly through its amelioration of inflammatory and oxidative activities.


2021 ◽  
Vol 8 ◽  
Author(s):  
Teketay Wassie ◽  
Zhuang Lu ◽  
Xinyi Duan ◽  
Chunyan Xie ◽  
Kefyalew Gebeyew ◽  
...  

Marine algae polysaccharides have been shown to regulate various biological activities, such as immune modulation, antioxidant, antidiabetic, and hypolipidemic. However, litter is known about the interaction of these polysaccharides with the gut microbiota. This study aimed to evaluate the effects of marine algae Enteromorpha (Ulva) prolifera polysaccharide (EP) supplementation on growth performance, immune response, and caecal microbiota of broiler chickens. A total of 200 1-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with ten replications of ten chickens in each replication. The dietary treatments consisted of the control group (fed basal diet), and EP group (received diet supplemented with 400 mg EP/kg diet). Results showed that chickens fed EP exhibited significantly higher (P < 0.05) body weight and average daily gain than the chicken-fed basal diet. In addition, significantly longer villus height, shorter crypt depth, and higher villus height to crypt depth ratio were observed in the jejunal and ileal tissues of chickens fed EP. EP supplementation upregulated the mRNA expression of NF-κB, TLR4, MyD88, IL-2, IFN-α, and IL-1β in the ileal and jejunal tissues (P < 0.05). Besides, we observed significantly higher (P < 0.05) short-chain volatile fatty acids (SCFAs) levels in the caecal contents of the EP group than in the control group. Furthermore, 16S-rRNA analysis revealed that EP supplementation altered gut microbiota and caused an abundance shift at the phylum and genus level in broiler chicken. Interestingly, we observed an association between microbiota and SCFAs production. Overall, this study demonstrated that supplementation of diet with EP promotes growth performance, improves intestinal immune response and integrity, and modulates the caecal microbiota of broiler chickens. This study highlighted the application of marine algae polysaccharides as an antibiotic alternative for chickens. Furthermore, it provides insight to develop marine algae polysaccharide-based functional food and therapeutic agent.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 301 ◽  
Author(s):  
Ivana Prakatur ◽  
Maja Miskulin ◽  
Mirela Pavic ◽  
Ksenija Marjanovic ◽  
Valerija Blazicevic ◽  
...  

The aim of this study was to determine the influence of dietary supplementation with propolis and bee pollen on the intestinal morphology and absorptive surface areas of chickens. Two hundred day-old Ross 308 chickens (100 male and 100 female) were equally allocated into five groups. Throughout the whole study, the control group of chickens was fed with a basal diet, while the experimental groups of chickens were fed with the same diet supplemented with propolis and bee pollen: P1 = 0.25 g of propolis/kg + 20 g of bee pollen/kg; P2 = 0.5 g of propolis/kg; P3 = 1.0 g of propolis/kg; P4 = 20 g of bee pollen/kg. The duodenal villi of chickens from all experimental groups were significantly higher and wider (p < 0.001), while their duodenal villi crypts were significantly deeper (p < 0.001) in comparison with these parameters in chickens from the control group. The villus height to crypt depth ratio, as well as the absorptive surface areas of broiler chickens, were significantly increased (p < 0.001) in experimental groups of chickens in comparison with the control group. These findings suggest that dietary supplementation with propolis and bee pollen has a beneficial effect on broilers chickens’ intestinal morphophysiology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chengjun Hu ◽  
Lihong Gu ◽  
Mao Li ◽  
Fengjie Ji ◽  
Weiping Sun ◽  
...  

Didancao (Elephantopus scaber L.) has been used as a traditional herbal medicine and has exhibited a beneficial role in animal health. This study aimed to investigate the effects of dietary supplementation with E. scaber on growth performance, meat quality, intestinal morphology, and microbiota composition in ducks. A total of 480 Jiaji ducks (42 days old, male:female ratio = 1:1) were randomly assigned to one of four treatments. There were six replicates per treatment, with 20 ducks per replicate. The ducks in the control group (Con) were fed a basal diet; the three experimental groups were fed a basal diet supplementation with 30 (T1), 80 (T2), and 130 mg/kg (T3) of E. scaber. After a 48-day period of supplementation, growth performance, meat quality, intestinal morphology, and microbiota composition were evaluated. The results showed that no differences were observed in the final body weight, average daily feed intake, and average daily gain among the four groups. Compared with that in the Con group, the feed conversion in the T1 and T2 groups was increased significantly; the T2 group was shown to decrease the concentration of alanine aminotransferase in serum; the T3 group was lower than the Con group in the concentration of aspartate aminotransferase and was higher than the Con group in the concentration of high-density lipoprotein-cholesterol. The highest concentration of creatinine was observed in the T1 group. The T2 group was higher than the Con group in the contents of Phe, Ala, Gly, Glu, Arg, Lys, Tyr, Leu, Ser, Thr, Asp, and total amino acids in the breast muscle. Moreover, the T2 group was higher than the Con group in the contents of meat C18:2n−6 and polyunsaturated fatty acid. The concentration of inosinic acid in the T1, T2, and T3 groups was significantly higher than that in the Con group. However, the Con group was higher than the T2 or T3 group in the Zn content. The T2 group was lower than the Con group in the jejunal crypt depth. The T3 group was higher than the Con group in the ileal villus height and the ratio of villus height to crypt depth. In addition, the T3 group had a trend to significantly increase the abundance of Fusobacteria. Compared with the Con group, the T1 and T2 groups displayed a higher abundance of Subdoligranulum. Collectively, dietary supplementation with 80 mg/kg of E. scaber improves meat quality and intestinal development in ducks.


2021 ◽  
Author(s):  
Hong Yongxing ◽  
Zhang Lang ◽  
Tian Kui ◽  
Sun Haodong ◽  
Liu Xingting ◽  
...  

Abstract Background: Lasia spinosa Thw. (LST) has been proven to be nutritious and have growth-promoting, antioxidant functions and so on, but its effect in chicken is still unclear. This study aimed to evaluate the effects of dietary LST powder supplementation on growth performance, blood metabolites, antioxidant status, intestinal morphology and cecal microbiome in Chinese yellow-feathered broilers.Methods: A total of 400 one-day-old yellow-feather broilers were randomly allotted to 4 dietary treatments: LST0 group (a basal diet), LST1 group (a basal diet with 1% LST powder), LST2 group (a basal diet with 2% LST powder), LST4 group (a basal diet with 4% LST powder), ten replicates for each treatment and 10 broilers in each treatment group. Results: Results indicated that the average daily feed intake of broilers during 22-42d and the average daily gain of chickens over all periods were significantly increased by dietary supplementation of LST powder compared to a control group, while the feed conversion ratio during the overall periods was markedly decreased. The levels of SOD, CAT and GSH-Px in serum, liver and breast muscle were also significantly increased in LST supplemented groups, while ROS and MDA in serum, liver and breast muscle were decreased. Furthermore, the levels of TG and LDL-C were significantly decreased by the addition of dietary LST powder, while levels of HDL-C, Ca, Fe, Mg and P were linearly increased. Regarding the gut morphometric, crypt depth was significantly decreased by LST supplementation, while villus height and the ratio of villus height to crypt depth were notably increased. Sequencing of 16S rRNA from the cecal contents of broilers revealed that the composition of the chicken gut microbiota was altered by LST supplementation. Moreover, the diversity of microbiota in broilers was increased in the LST1 groups but was decreased in the LST2 and LST4 groups compared with LST0 groups. The differential genera enriched in LST1 groups, such as Bacillus, Odoribacter, Sutterella, Anaerofilum, Peptococcus, were closely related to the increased growth performance, antioxidant status, intestinal morphology, Ca, Mg and reduced blood lipid in the treated broilers. Conclusions: The supplementation of LST powder to the diets of Chinese yellow-feathered broilers improved growth performance, lipid profile, antioxidant indices, intestinal morphology and gut microbiota balance, with its optimum level in yellow-feathered broilers’ diet being 1%.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 325-326
Author(s):  
Junmin Zhang ◽  
Chaohua Tang ◽  
Yunsheng Han

Abstract This study was conducted to determine the effects of organic and medium chain fatty acids (OMCFA) as antibiotic substitutes on growth performance, immune function, intestinal morphology, and ileum microbiota of weaned piglets challenged with Escherichia coli K88. Over 28 days, 150 weaned piglets (28-day old, 8.80 ± 0.19 kg) were allocated to five treatments (with five replicates of six piglets each): negative basal diet (NBD), positive basal diet (PBD), antibiotic growth promoters diet (AGPD, BD+0.04 g/kg zinc bacitracin, 0.03 g/kg chlortetracycline, and 0.05 g/kg kitasamycin), OMCFA 1 diet (BD+0.2% OMCFA, OMCFA is a synergistic blend of a phenolic compound, slow release C12, target release butyrates, formic, acetic, lactic, propionic, citric, sorbic acid), and OMCFA 2 diet (Day 1 to 14: BD+0.8% OMCFA, Day 15 to 28: BD+0.6% OMCFA). On the 15th day, piglets in the PBD, AGPD, OMCFA 1, and OMCFA 2 treatment groups were orally challenged with 20 mL Escherichia coli K88 (108 CFU/mL). Body weight on day 14 and average daily gain from 1st to 14th day of the subjects in the AGPD and OMCFA 1 groups were higher than those in the NBD and PBD groups (P &lt; 0.05). Diarrhea rate after challenge was lower in the AGPD group than PBD one, and there was no significant difference between the AGPD and OMCFA 1 group. OMCFA decreased total leukocytes and the percentage of neutrophils (P &lt; 0.05), increased the percentage of lymphocytes (P &lt; 0.05), on day 14, and increased villus height and villus height/crypt depth ratio in the duodenum, jejunum, and ileum, compared with PBD group. 16S rDNA sequencing showed that OMCFA might stabilize the ileum microbiota caused by E. coli K88 challenge. These results indicated that OMCFA could be used as potential alternatives to AGPs in weaned piglets.


2022 ◽  
Vol 52 (6) ◽  
Author(s):  
Aydin Altop ◽  
Isa Coskun ◽  
Ayse Gul Filik ◽  
Huseyin Cayan ◽  
Ahmet Sahin ◽  
...  

ABSTRACT: Effects of dietary Agaricus bisporus mixture or stalk or cap on growth performance, carcass components and some meat quality parameters, mesophilic aerobic bacterial counts, and intestinal histomorphology in broiler chickens were investigated. Two hundred and forty one-day-old male Ross 308 broiler chickens were divided into 4 experimental groups with 4 replicates, each including 15 birds. Chickens were fed with basal diet (C), mushroom mixture (MM, 10 g stalk+10 g cap/kg diet), mushroom stalk (MS, 20 g/kg diet) and mushroom cap (MC, 20 g/kg diet). Feed conversion ratio (FCR) was improved (P < 0.01) by dietary MS while feed intake (FI) decreased (P < 0.01) in all treatment groups compared to control. However, body weight gain (BWG) was decreased (P < 0.01) by MC inclusion. Mushroom supplemented groups had higher (P < 0.05) mesophilic aerobic bacteria in the cecum. MS inclusion increased villus height to crypt depth ratio in the jejunum (P < 0.01) and villus height in the ileum (P < 0.01) and jejunum (P < 0.05). MC increased (P < 0.01) crypt depth in the jejunum. There were no statistical differences among groups for carcass components (P > 0.05). The L* values were decreased (P < 0.01) in thigh meat but increased (P < 0.01) in breast meat by mushroom inclusion. The a* values were decreased (P < 0.01) and b* values were increased (P < 0.05) in both thigh and breast meat with mushroom addition to diet. The obtained results indicated that A. bisporus stalk meal at an inclusion level of 20 g/kg of diet had favourable effects on growth performance with higher feed efficiency, improved intestinal morphology with higher villus height and increased meat quality of broiler chickens.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 493 ◽  
Author(s):  
Jun Li ◽  
Yefei Cheng ◽  
Yueping Chen ◽  
Hengman Qu ◽  
Yurui Zhao ◽  
...  

This study aimed to investigate the effects of chitooligosaccharide (COS) inclusion as an alternative to antibiotics on growth performance, intestinal morphology, barrier function, antioxidant capacity, and immunity in broilers. In total, 144 one-day-old Arbor Acres broiler chicks were randomly assigned into 3 groups and fed a basal diet free from antibiotics (control group) or the same basal diet further supplemented with either chlortetracycline (antibiotic group) or COS, for 21 days. Compared with the control group, inclusion of COS reduced the feed to gain ratio, the jejunal crypt depth, the plasma diamine oxidase activity, and the endotoxin concentration, as well as jejunal and ileal malondialdehyde contents, whereas increased duodenal villus height, duodenal and jejunal ratio of villus height to crypt depth, intestinal immunoglobulin G, and jejunal immunoglobulin M (IgM) contents were observed, with the values of these parameters being similar or better to that of the antibiotic group. Additionally, supplementation with COS enhanced the superoxide dismutase activity and IgM content of the duodenum and up-regulated the mRNA level of claudin three in the jejunum and ileum, when compared with the control and antibiotic groups. In conclusion, dietary COS inclusion (30 mg/kg), as an alternative to antibiotics, exerts beneficial effects on growth performance, intestinal morphology, barrier function, antioxidant capacity, and immunity in broilers.


2022 ◽  
Vol 8 ◽  
Author(s):  
Lang Zhang ◽  
Yongxing Hong ◽  
Yuying Liao ◽  
Kui Tian ◽  
Haodong Sun ◽  
...  

This study aimed to evaluate the effects of dietary Lasia spinosa Thw. (LST) powder supplementation on growth performance, blood metabolites, antioxidant status, intestinal morphology, and cecal microbiome in broiler chickens. A total of 400 1-day-old male Guangxi partridge broilers (initial body weight: 42.52 ± 0.06 g) were randomly allotted to 4 dietary treatments: LST0 group (a basal diet), LST1 group (a basal diet with 1% LST powder), LST2 group (a basal diet with 2% LST powder), LST4 group (a basal diet with 4% LST powder), 10 replicates for each treatment, and 10 broilers in each treatment group. Results indicated that the average daily feed intake of broilers during 22–42 days and the average daily gain of chickens during 1–42 days significantly increased by dietary supplementation of LST powder (p &lt; 0.01), while the feed conversion ratio during the overall periods was decreased by dietary supplementation of LST powder (p &lt; 0.01). Except for the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in liver (p &gt; 0.05), the levels of SOD, catalase (CAT) and GSH-Px in serum, liver, and breast muscle were significantly increased in the LST supplemented groups (p &lt; 0.05), while the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in serum, liver, and breast muscle were significantly decreased in the LST supplemented groups (p &lt; 0.05). Furthermore, the levels of triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased by the addition of dietary LST powder (p &lt; 0.01), while the levels of HDL-C, Ca, Fe, Mg, and P were linearly increased by the addition of dietary LST powder (p &lt; 0.01). With respect to the gut morphometric, crypt depth was significantly decreased by LST supplementation (p &lt; 0.05), while villus height and the ratio of villus height to crypt depth were notably increased by LST supplementation (p &lt; 0.05). Sequencing of 16S ribosomal RNA (16S rRNA) from the cecal contents of broilers revealed that the composition of the chicken gut microbiota was altered by LST supplementation. The α-diversity of microbiota in broilers was increased (p &lt; 0.05) in the LST1 group, but was decreased (p &lt; 0.05) in the LST2 and LST4 groups compared with the LST0 group. The differential genera enriched in the LST1 group, such as Bacillus, Odoribacter, Sutterella, Anaerofilum, Peptococcus, were closely related to the increased growth performance, antioxidant status, intestinal morphology, Ca, Mg, and reduced blood lipid in the treated broilers.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 624
Author(s):  
Xinfu Zeng ◽  
Qing Li ◽  
Caimei Yang ◽  
Yang Yu ◽  
Zixian Fu ◽  
...  

We aimed to investigate the effects of Clostridium butyricum-, Bacillus subtilis-, and Bacillus licheniformis-based potential probiotics on the growth performance, intestinal morphology, immune responses, and caecal short chain fatty acids (SCFAs) and microbial structure in broiler chickens. Three treatment groups containing a total of 1200 one-day-old AA broilers were included: birds fed with a basal diet only (Con), birds fed with added 1010 probiotics cfu/kg (ProL), and birds fed with added 1011 probiotics cfu/kg (ProH). The dietary probiotics significantly improved the final and average body weights and serum immunoglobulins A, M, and Y. The probiotics also enhanced the ileal morphology and improved the caecal acetate, butyrate, and propionate contents. Furthermore, 16S rRNA sequencing revealed that dietary compound probiotics modulated the caecal microflora composition as follows: (1) all birds shared 2794 observed taxonomic units; (2) treatment groups were well separated in the PCA and PCoA analysis; (3) the relative abundance of Parabacteroides, Ruminococcaceae_UCG-014, Barnesiella, Odoribacter, [Eubacterium_coprostanoligenes_group], [Ruminococcus]_torques_group, and Butyricimonas significantly varied between treatments. The compound probiotics improved the growth performance, serum immune responses, the ratio of ileal villus height to crypt depth, and major caecal SCFAs in broiler chickens. The dietary C. butyricum-, B. subtilis-, and B. licheniformis-based probiotics improved overall broiler health and would benefit the poultry industry.


Sign in / Sign up

Export Citation Format

Share Document