scholarly journals Antimicrobial Treatment Strategies for Stenotrophomonas maltophilia: A Focus on Novel Therapies

Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1226
Author(s):  
Jean Gibb ◽  
Darren W. Wong

Stenotrophomonas maltophilia is an urgent global threat due to its increasing incidence and intrinsic antibiotic resistance. Antibiotic development has focused on carbapenem-resistant Enterobacteriaceae, Pseudomonas, and Acinetobacter, with approved antibiotics in recent years having limited activity for Stenotrophomonas. Accordingly, novel treatment strategies for Stenotrophomonas are desperately needed. We conducted a systemic literature review and offer recommendations based on current evidence for a treatment strategy of Stenotrophomonas infection.

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 345
Author(s):  
Ciara S. McNevin ◽  
Anne-Marie Baird ◽  
Ray McDermott ◽  
Stephen P. Finn

Prostate Cancer (PCa) is a leading cause of morbidity and mortality among men worldwide. For most men with PCa, their disease will follow an indolent course. However, advanced PCa is associated with poor outcomes. There has been an advent of new therapeutic options with proven efficacy for advanced PCa in the last decade which has improved survival outcomes for men with this disease. Despite this, advanced PCa continues to be associated with a high rate of death. There is a lack of strong evidence guiding the timing and sequence of these novel treatment strategies. This paper focuses on a review of the strategies for diagnostic and the current evidence available for treatment selection in advanced PCa.


2019 ◽  
Vol 174 (1) ◽  
pp. 133-146 ◽  
Author(s):  
Kevin G McGarry ◽  
Remy F Lalisse ◽  
Robert A Moyer ◽  
Kristyn M Johnson ◽  
Alexi M Tallan ◽  
...  

Abstract Chemical warfare nerve agents (CWNAs) present a global threat to both military and civilian populations. The acute toxicity of CWNAs stems from their ability to effectively inhibit acetylcholinesterase (AChE). This inhibition can lead to uncontrolled cholinergic cellular signaling, resulting in cholinergic crisis and, ultimately, death. Although the current FDA-approved standard of care is moderately effective when administered early, development of novel treatment strategies is necessary. Butyrylcholinesterase (BChE) is an enzyme which displays a high degree of structural homology to AChE. Unlike AChE, the roles of BChE are uncertain and possibilities are still being explored. However, BChE appears to primarily serve as a bioscavenger of toxic esters due to its ability to accommodate a wide variety of substrates within its active site. Like AChE, BChE is also readily inhibited by CWNAs. Due to its high affinity for binding CWNAs, and that null-BChE yields no apparent health effects, exogenous BChE has been explored as a candidate therapeutic for CWNA intoxication. Despite years of research, minimal strides have been made to develop a catalytic bioscavenger. Furthermore, BChE is only in early clinical trials as a stoichiometric bioscavenger of CWNAs, and large quantities must be administered to treat CWNA toxicity. Here, we describe previously unidentified mutations to residues within and adjacent to the acyl binding pocket (positions 282–285 were mutagenized from YGTP to NHML) of BChE that confer catalytic degradation of the CWNA, sarin. These mutations, along with corresponding future efforts, may finally lead to a novel therapeutic to combat CWNA intoxication.


2020 ◽  
pp. 972-987
Author(s):  
Ramez N. Eskander ◽  
Julia Elvin ◽  
Laurie Gay ◽  
Jeffrey S. Ross ◽  
Vincent A. Miller ◽  
...  

PURPOSE High-grade neuroendocrine cervical cancer (HGNECC) is an uncommon malignancy with limited therapeutic options; treatment is patterned after the histologically similar small-cell lung cancer (SCLC). To better understand HGNECC biology, we report its genomic landscape. PATIENTS AND METHODS Ninety-seven patients with HGNECC underwent comprehensive genomic profiling (182-315 genes). These results were subsequently compared with a cohort of 1,800 SCLCs. RESULTS The median age of patients with HGNECC was 40.5 years; 83 patients (85.6%) harbored high-risk human papillomavirus (HPV). Overall, 294 genomic alterations (GAs) were identified (median, 2 GAs/sample; average, 3.0 GAs/sample, range, 0-25 GAs/sample) in 109 distinct genes. The most frequently altered genes were PIK3CA (19.6% of cohort), MYC (15.5%), TP53 (15.5%), and PTEN (14.4%). RB1 GAs occurred in 4% versus 32% of HPV-positive versus HPV-negative tumors ( P < .0001). GAs in HGNECC involved the following pathways: PI3K/AKT/mTOR (41.2%); RAS/MEK (11.3%); homologous recombination (9.3%); and ERBB (7.2%). Two tumors (2.1%) had high tumor mutational burden (TMB; both with MSH2 alterations); 16 (16.5%) had intermediate TMB. Seventy-one patients (73%) had ≥ 1 alteration that was theoretically druggable. Comparing HGNECC with SCLC, significant differences in TMB, microsatellite instability, HPV-positive status, and in PIK3CA, MYC, PTEN, TP53, ARID1A, and RB1 alteration rates were found. CONCLUSION This large cohort of patients with HGNECC demonstrated a genomic landscape distinct from SCLC, calling into question the biologic and therapeutic relevance of the histologic similarities between the entities. Furthermore, 73% of HGNECC tumors had potentially actionable alterations, suggesting novel treatment strategies for this aggressive malignancy.


2020 ◽  
Author(s):  
Bushra Alharbi ◽  
Maggy T. Sikulu-Lord ◽  
Anton Lord ◽  
Hosam M Zowawi ◽  
Ella Trembizki

AbstractAntimicrobial resistance (AMR) caused by Carbapenem-Resistant Enterobacteriaceae (CRE) is a global threat. Accurate identification of these bacterial species with associated AMR is critical for their management. While highly accurate methods to detect CRE are available, they are costly, timely and require expert skills making their application infeasible in low-resource settings. Here, we investigated the potential of Near-infrared Spectroscopy (NIRS) for a range of applications; i) the detection and differentiation of isolates of two pathogenic Enterobacteriaceae species, Klebsiella pneumoniae and Escherichia coli and, ii) the differentiation of carbapenem resistant and susceptible K. pneumoniae. NIRS has successfully differentiated between K. pneumoniae and E. coli isolates with a predictive accuracy of 89.04% (95% CI; 88.7-89.4%). K. pneumoniae isolates harbouring carbapenem resistance determinants were differentiated from susceptible K. pneumoniae strains with an accuracy of 85% (95% CI; 84.2-86.1%). To our knowledge, this is the largest demonstration of a proof of concept for the utility and feasibility of NIRS for rapidly differentiating between K. pneumoniae from E.coli as well as from carbapenem resistant K. pneumoniae from susceptible strains.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5435
Author(s):  
Maiko Matsushita

Introduction of tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myelogenous leukemia (CML), and treatment-free remission (TFR) is now a treatment goal. However, about half of the patients experience molecular relapse after cessation of TKIs, suggesting that leukemic stem cells (LSCs) are resistant to TKIs. Eradication of the remaining LSCs using immunotherapies including interferon-alpha, vaccinations, CAR-T cells, and other drugs would be a key strategy to achieve TFR.


Sign in / Sign up

Export Citation Format

Share Document