scholarly journals Oxidative Stress Signaling in Blast TBI-Induced Tau Phosphorylation

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 955
Author(s):  
Chunyu Wang ◽  
Changjuan Shao ◽  
Li Zhang ◽  
Sandra L. Siedlak ◽  
James S. Meabon ◽  
...  

Traumatic brain injury caused by blast is associated with long-term neuropathological changes including tau phosphorylation and pathology. In this study, we aimed to determine changes in initial tau phosphorylation after exposure to a single mild blast and the potential contribution of oxidative stress response pathways. C57BL/6 mice were exposed to a single blast overpressure (BOP) generated by a compressed gas-driven shock tube that recapitulates battlefield-relevant open-field BOP, and cortical tissues were harvested at different time points up to 24 h after blast for Western blot analysis. We found that BOP caused elevated tau phosphorylation at Ser202/Thr205 detected by the AT8 antibody at 1 h post-blast followed by tau phosphorylation at additional sites (Ser262 and Ser396/Ser404 detected by PHF1 antibody) and conformational changes detected by Alz50 antibody. BOP also induced acute oxidative damage at 1 h post-blast and gradually declined overtime. Interestingly, Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were acutely activated in a similar temporal pattern as the rise and fall in oxidative stress after blast, with p38 showing a similar trend. However, glycogen synthase kinase-3 β (GSK3β) was inhibited at 1 h and remained inhibited for 24 h post blast. These results suggested that mitogen-activated protein kinases (MAPKs) but not GSK3β are likely involved in mediating the effects of oxidative stress on the initial increase of tau phosphorylation following a single mild blast.

2010 ◽  
Vol 4 ◽  
pp. JEN.S6295
Author(s):  
Claudie Hooper ◽  
Reem Soliman ◽  
Simon Lovestone ◽  
Richard Killick

Here we show by western blotting that transcriptionally active isoforms of p63 (p63α and p63γ) induce the phosphorylation of human 2N4R tau at the tau-1/AT8 epitope in HEK293a cells; a phospho-epitope increased in Alzheimer's disease. Confocal microscopy shows that tau and p63α are spatially separated intracellularly. Tau was found in the cytoskeletal compartment, whilst p63α was located in the nucleus, indicating that the effects of p63 on tau phosphorylation are indirectly mediated. Tau phosphorylation occurred independently of the known tau kinases, protein kinase C delta (PKCδ), c-Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38), glycogen synthase kinase 3 (GSK3), v-akt murine thymoma viral oncogene homolog (AKT) and cyclin-dependent kinase 5 (Cdk5) and the tau protein phosphatases (PP), PP1 and PP2A-Aα/β. Considering that p63 and tau are both associated with developmental processes, these findings have ramifications for neuronal development and synaptic plasticity and also neurodegenerative diseases such as Alzheimer's disease and other tauopathies.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 867 ◽  
Author(s):  
Hyun Park ◽  
Jong Kang ◽  
Myung Lee

1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.


2001 ◽  
Vol 67 ◽  
pp. 73-80 ◽  
Author(s):  
Brian H. Anderton ◽  
Joanna Betts ◽  
Walter P. Blackstock ◽  
Jean-Pierre Brion ◽  
Sara Chapman ◽  
...  

The microtubule-associated protein, tau, is the principal component of paired helical filaments (PHFs) in Alzheimer's disease. PHF-tau is highly phosphorylated and a total of 25 sites of phosphorylation have so far been identified. Many of these sites are serine or threonine residues that are immediately followed in the sequence by proline residues, and hence are candidate phosphorylation sites for proline-directed kinases. In vitro, glycogen synthase kinase-3 (GSK-3), extracellular signal-related kinase-1 and -2, and mitogen-activated protein kinases, p38 kinase and c-jun N-terminal kinase, all phosphorylate many of these sites, although with different efficiencies for particular sites. Phosphorylation studies in transfected cells and neurons show that GSK-3 phosphorylates tau more extensively than do these other proline-directed kinases. Mutations in tau have been shown to affect in vitro phosphorylation of tau by GSK-3. The Arg406-->Trp (R406W) tau mutation also affects tau phosphorylation in cells.


2019 ◽  
Vol 295 (3) ◽  
pp. 673-689 ◽  
Author(s):  
Friederike Hans ◽  
Hanna Glasebach ◽  
Philipp J. Kahle

Insoluble, hyperubiquitylated TAR DNA-binding protein of 43 kDa (TDP-43) in the central nervous system characterizes frontotemporal dementia and ALS in many individuals with these neurodegenerative diseases. The causes for neuropathological TDP-43 aggregation are unknown, but it has been suggested that stress granule (SG) formation is important in this process. Indeed, in human embryonic kidney HEK293E cells, various SG-forming conditions induced very strong TDP-43 ubiquitylation, insolubility, and reduced splicing activity. Osmotic stress–induced SG formation and TDP-43 ubiquitylation occurred rapidly and coincided with colocalization of TDP-43 and SG markers. Washout experiments confirmed the rapid dissolution of SGs, accompanied by normalization of TDP-43 ubiquitylation and solubility. Surprisingly, interference with the SG process using a protein kinase R–like endoplasmic reticulum kinase inhibitor (GSK2606414) or the translation blocker emetine did not prevent TDP-43 ubiquitylation and insolubility. Thus, parallel pathways may lead to pathological TDP-43 modifications independent of SG formation. Using a panel of kinase inhibitors targeting signaling pathways of the osmotic shock inducer sorbitol, we could largely rule out the stress-activated and extracellular signal–regulated protein kinase modules and glycogen synthase kinase 3β. For arsenite, but not for sorbitol, quenching oxidative stress with N-acetylcysteine did suppress both SG formation and TDP-43 ubiquitylation and insolubility. Thus, sodium arsenite appears to promote SG formation and TDP-43 modifications via oxidative stress, but sorbitol stimulates TDP-43 ubiquitylation and insolubility via a novel pathway(s) independent of SG formation. In conclusion, pathological TDP-43 modifications can be mediated via multiple distinct pathways for which SGs are not essential.


Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5086-5091 ◽  
Author(s):  
Clara M. Cheng ◽  
Victor Tseng ◽  
Jie Wang ◽  
Daniel Wang ◽  
Ludmila Matyakhina ◽  
...  

IGF action has been implicated in the promotion of oxidative stress and aging in invertebrate and murine models. However, some in vitro models suggest that IGF-I specifically prevents neuronal oxidative damage. To investigate whether IGF-I promotes or retards brain aging, we evaluated signs of oxidative stress and neuropathological aging in brains from 400-d-old Igf1−/− and wild-type (WT) mice. Lipofuscin pigment accumulation reflects oxidative stress and aging, but we found no difference in lipofuscin deposition in Igf1−/− and WT brains. Likewise, there was no apparent difference in accumulation of nitrotyrosine residues in Igf1−/− and WT brains, except for layer IV/V of the cerebral cortex, where these proteins were about 20% higher in the Igf1−/− brain (P = 0.03). We found no difference in the levels of oxidative stress-related enzymes, neuronal nitric oxide synthase, inducible nitric oxide synthase, and superoxide dismutase in Igf1−/− and WT brains. Tau is a microtubule-associated protein that causes the formation of neurofibrillary tangles and senile plaques as it becomes hyperphosphorylated in the aging brain. Tau phosphorylation was dramatically increased on two specific residues, Ser-396 and Ser-202, both glycogen synthase kinases target sites implicated in neurodegeneration. These observations indicate that IGF-I has a major role in regulating tau phosphorylation in the aging brain, whereas its role in promoting or preventing oxidative stress remains uncertain.


1998 ◽  
Vol 336 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Morag SHAW ◽  
Philip COHEN ◽  
Dario R. ALESSI

Protein kinase B (PKB) isoforms became activated [and glycogen synthase kinase-3 (GSK3) became inhibited] when mouse Swiss 3T3 fibroblasts were exposed to oxidative stress (H2O2) or heat shock, but not when they were exposed to osmotic shock (0.5 M sorbitol or 0.7 M NaCl), chemical stress (sodium arsenite), the protein-synthesis inhibitor anisomycin, or UV radiation. In contrast, all seven stimuli activated mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP-K2). The activation of MAPKAP-K2 was suppressed by the drug SB 203580, but not by inhibitors of phosphoinositide (phosphatidylinositide, PI) 3-kinase. In contrast, the activation of PKB isoforms and the inhibition of GSK3 by oxidative stress or heat shock were prevented by inhibitors of PI 3-kinase, but not by SB 203580. Thus the activation of PKB by oxidative stress or heat shock is mediated by PI 3-kinase and not by MAPKAP-K2. PKBα and PKBγ were also activated by heat shock and oxidative stress in human embryonic kidney 293 cells and PKBγ was activated by heat shock in NIH 3T3 cells; in each case activation was suppressed by inhibitors of PI 3-kinase. The activation of PKB isoforms by H2O2 may underlie some of the insulin-mimetic effects of this compound.


2006 ◽  
Vol 400 (3) ◽  
pp. 511-520 ◽  
Author(s):  
Diana Poppek ◽  
Susi Keck ◽  
Gennady Ermak ◽  
Tobias Jung ◽  
Alexandra Stolzing ◽  
...  

Hyperphosphorylated tau proteins accumulate in the paired helical filaments of neurofibrillary tangles seen in such tauopathies as Alzheimer's disease. In the present paper we show that tau turnover is dependent on degradation by the proteasome (inhibited by MG132) in HT22 neuronal cells. Recombinant human tau was rapidly degraded by the 20 S proteasome in vitro, but tau phosphorylation by GSK3β (glycogen synthase kinase 3β) significantly inhibited proteolysis. Tau phosphorylation was increased in HT22 cells by OA [okadaic acid; which inhibits PP (protein phosphatase) 1 and PP2A] or CsA [cyclosporin A; which inhibits PP2B (calcineurin)], and in PC12 cells by induction of a tet-off dependent RCAN1 transgene (which also inhibits PP2B). Inhibition of PP1/PP2A by OA was the most effective of these treatments, and tau hyperphosphorylation induced by OA almost completely blocked tau degradation in HT22 cells (and in cell lysates to which purified proteasome was added) even though proteasome activity actually increased. Many tauopathies involve both tau hyperphosphorylation and the oxidative stress of chronic inflammation. We tested the effects of both cellular oxidative stress, and direct tau oxidative modification in vitro, on tau proteolysis. In HT22 cells, oxidative stress alone caused no increase in tau phosphorylation, but did subtly change the pattern of tau phosphorylation. Tau was actually less susceptible to direct oxidative modification than most cell proteins, and oxidized tau was degraded no better than untreated tau. The combination of oxidative stress plus OA treatment caused extensive tau phosphorylation and significant inhibition of tau degradation. HT22 cells transfected with tau–CFP (cyan fluorescent protein)/tau–GFP (green fluorescent protein) constructs exhibited significant toxicity following tau hyperphosphorylation and oxidative stress, with loss of fibrillar tau structure throughout the cytoplasm. We suggest that the combination of tau phosphorylation and tau oxidation, which also occurs in tauopathies, may be directly responsible for the accumulation of tau aggregates.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jiajia Lin ◽  
Jie Yu ◽  
Jiaying Zhao ◽  
Ke Zhang ◽  
Jiachen Zheng ◽  
...  

Alzheimer’s disease (AD), the most common neurodegenerative disorder, is characterized by neurofibrillary tangles, synaptic impairments, and loss of neurons. Oligomers of β-amyloid (Aβ) are widely accepted as the main neurotoxins to induce oxidative stress and neuronal loss in AD. In this study, we discovered that fucoxanthin, a marine carotenoid with antioxidative stress properties, concentration dependently prevented Aβ oligomer-induced increase of neuronal apoptosis and intracellular reactive oxygen species in SH-SY5Y cells. Aβ oligomers inhibited the prosurvival phosphoinositide 3-kinase (PI3K)/Akt cascade and activated the proapoptotic extracellular signal-regulated kinase (ERK) pathway. Moreover, inhibitors of glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase (MEK) synergistically prevented Aβ oligomer-induced neuronal death, suggesting that the PI3K/Akt and ERK pathways might be involved in Aβ oligomer-induced neurotoxicity. Pretreatment with fucoxanthin significantly prevented Aβ oligomer-induced alteration of the PI3K/Akt and ERK pathways. Furthermore, LY294002 and wortmannin, two PI3K inhibitors, abolished the neuroprotective effects of fucoxanthin against Aβ oligomer-induced neurotoxicity. These results suggested that fucoxanthin might prevent Aβ oligomer-induced neuronal loss and oxidative stress via the activation of the PI3K/Akt cascade as well as inhibition of the ERK pathway, indicating that further studies of fucoxanthin and related compounds might lead to a useful treatment of AD.


Sign in / Sign up

Export Citation Format

Share Document