scholarly journals A New Geniposidic Acid Derivative Exerts Antiaging Effects through Antioxidative Stress and Autophagy Induction

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 987
Author(s):  
Ying Wang ◽  
Yanjun Pan ◽  
Yanan Liu ◽  
Dejene Disasa ◽  
Matsuura Akira ◽  
...  

Two compounds that can prolong the replicative lifespan of yeast, geniposidic acid (Compound 1) and geniposide (Compound 2), were isolated from Gardenia jasminoides Ellis. Compared with Compound 1, Compound 2 was different at C11 and showed better bioactivity. On this basis, seven new geniposidic derivatives (3–9) were synthesized. Geniposidic 4-isoamyl ester (8, GENI), which remarkably prolonged the replicative and chronological lifespans of K6001 yeast at 1 µM, was used as the lead compound. Autophagy and antioxidative stress were examined to clarify the antiaging mechanism of GENI. GENI increased the enzymes activities and gene expression levels of superoxide dismutase (SOD) and reduced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) to improve the survival rate of yeast under oxidative stress. In addition, GENI did not extend the replicative lifespan of ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆cat, and ∆gpx mutants with K6001 background. The free green fluorescent protein (GFP) signal from the cleavage of GFP-Atg8 was increased by GENI. The protein level of free GFP showed a considerable increase and was time-dependent. Furthermore, GENI failed to extend the replicative lifespans of ∆atg32 and ∆atg2 yeast mutants. These results indicated that antioxidative stress and autophagy induction were involved in the antiaging effect of GENI.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qian Liu ◽  
Lihong Cheng ◽  
Akira Matsuura ◽  
Lan Xiang ◽  
Jianhua Qi

Gentiopicroside (GPS), an antiaging secoiridoid glycoside, was isolated from Gentiana rigescens Franch, a traditional Chinese medicine. It prolonged the replicative and chronological lifespans of yeast. Autophagy, especially mitophagy, and antioxidative stress were examined to clarify the mechanism of action of this compound. The free green fluorescent protein (GFP) signal from the cleavage of GFP-Atg8 and the colocation signal of MitoTracker Red CMXRos and GFP were increased upon the treatment of GPS. The free GFP in the cytoplasm and free GFP and ubiquitin of mitochondria were significantly increased at the protein levels in the GPS-treated group. GPS increased the expression of an essential autophagy gene, ATG32 gene, but failed to extend the replicative and chronological lifespans of ATG32 yeast mutants. GPS increased the survival rate of yeast under oxidative stress condition; enhanced the activities of catalase, superoxide dismutase, and glutathione peroxidase; and decreased the levels of reactive oxygen species and malondialdehyde. The replicative lifespans of Δsod1, Δsod2, Δuth1, and Δskn7 were not affected by GPS. These results indicated that autophagy, especially mitophagy, and antioxidative stress are involved in the antiaging effect of GPS.


2006 ◽  
Vol 17 (7) ◽  
pp. 3009-3020 ◽  
Author(s):  
Johan-Owen De Craene ◽  
Jeff Coleman ◽  
Paula Estrada de Martin ◽  
Marc Pypaert ◽  
Scott Anderson ◽  
...  

The endoplasmic reticulum (ER) contains both cisternal and reticular elements in one contiguous structure. We identified rtn1Δ in a systematic screen for yeast mutants with altered ER morphology. The ER in rtn1Δ cells is predominantly cisternal rather than reticular, yet the net surface area of ER is not significantly changed. Rtn1-green fluorescent protein (GFP) associates with the reticular ER at the cell cortex and with the tubules that connect the cortical ER to the nuclear envelope, but not with the nuclear envelope itself. Rtn1p overexpression also results in an altered ER structure. Rtn proteins are found on the ER in a wide range of eukaryotes and are defined by two membrane-spanning domains flanking a conserved hydrophilic loop. Our results suggest that Rtn proteins may direct the formation of reticulated ER. We independently identified Rtn1p in a proteomic screen for proteins associated with the exocyst vesicle tethering complex. The conserved hydophilic loop of Rtn1p binds to the exocyst subunit Sec6p. Overexpression of this loop results in a modest accumulation of secretory vesicles, suggesting impaired exocyst function. The interaction of Rtn1p with the exocyst at the bud tip may trigger the formation of a cortical ER network in yeast buds.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yanjun Pan ◽  
Yanan Liu ◽  
Rui Fujii ◽  
Umer Farooq ◽  
Lihong Cheng ◽  
...  

The antiaging benzoquinone-type molecule ehretiquinone was isolated in a previous study as a leading compound from the herbal medicine Onosma bracteatum wall. This paper reports the antiaging effect and mechanism of ehretiquinone by using yeasts, mammal cells, and mice. Ehretiquinone extends not only the replicative lifespan but also the chronological lifespan of yeast and the yeast-like chronological lifespan of mammal cells. Moreover, ehretiquinone increases glutathione peroxidase, catalase, and superoxide dismutase activity and reduces reactive oxygen species and malondialdehyde (MDA) levels, contributing to the lifespan extension of the yeasts. Furthermore, ehretiquinone does not extend the replicative lifespan of Δsod1, Δsod2, Δuth1, Δskn7, Δgpx, Δcat, Δatg2, and Δatg32 mutants of yeast. Crucially, ehretiquinone induces autophagy in yeasts and mice, thereby providing significant evidence on the antiaging effects of the molecule in the mammalian level. Concomitantly, the silent information regulator 2 gene, which is known for its contributions in prolonging replicative lifespan, was confirmed to be involved in the chronological lifespan of yeasts and participates in the antiaging activity of ehretiquinone. These findings suggest that ehretiquinone shows an antiaging effect through antioxidative stress, autophagy, and histone deacetylase Sir2 regulation. Therefore, ehretiquinone is a promising molecule that could be developed as an antiaging drug or healthcare product.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xueli Cao ◽  
Yujuan Sun ◽  
Yanfei Lin ◽  
Yanjun Pan ◽  
Umer Farooq ◽  
...  

Methanol extracts of Momordica charantia L. fruits are extensively studied for their antiaging activities. A new cucurbitane-type triterpenoid (1) and nine other known compounds (2–10) were isolated, and their structures were determined according to their spectroscopic characteristics and chemical derivatization. Biological evaluation was performed on a K6001 yeast bioassay system. The results indicated that all the compounds extended the replicative lifespan of K6001 yeast significantly. Compound 9 was used to investigate the mechanism involved in the increasing of the lifespan. The results indicated that this compound significantly increases the survival rate of yeast under oxidative stress and decreases ROS level. Further study on gene expression analysis showed that compound 9 could reduce the levels of UTH1 and SKN7 and increase SOD1 and SOD2 gene expression. In addition, it could not extend the lifespan of the yeast mutants of Uth1, Skn7, Sod1, and Sod2. These results demonstrate that compound 9 exerts antiaging effects via antioxidative stress and regulation of UTH1, SKN7, SOD1, and SOD2 yeast gene expression.


2018 ◽  
Vol 315 (1) ◽  
pp. C104-C114 ◽  
Author(s):  
Koichi Ojima ◽  
Emi Ichimura ◽  
Takahiro Suzuki ◽  
Mika Oe ◽  
Susumu Muroya ◽  
...  

Myosin is a major myofibrillar component in skeletal muscles. In myofibrils, ~300 myosin molecules form a single thick filament in which there is constant turnover of myosin. Our previous study demonstrated that the myosin replacement rate is reduced by inhibition of protein synthesis (Ojima K, Ichimura E, Yasukawa Y, Wakamatsu J, Nishimura T, Am J Physiol Cell Physiol 309: C669–C679, 2015); however, additional factors influencing myosin replacement were unknown. Here, we showed that rapid myosin replacement requires heat shock protein 90 (HSP90) activity. We utilized the fluorescence recovery after photobleaching technique to measure the replacement rate of green fluorescent protein-fused myosin heavy chain (GFP-MYH) in myotubes overexpressing HSP90. Intriguingly, the myosin replacement rate was significantly increased in HSP90-overexpressing myotubes, whereas the myosin replacement rate slowed markedly in the presence of an HSP90-specific inhibitor, indicating that HSP90 activity promotes myosin replacement. To determine the mechanism of this effect, we investigated whether HSP90 activity increased the amount of myosin available for incorporation into myofibrils. Strikingly, the gene expression levels of MYHs were significantly elevated by HSP90 overexpression but downregulated by inhibition of HSP90 activity. Cytosolic myosin content was also increased in myotubes overexpressing HSP90. Taken together, our results demonstrate that HSP90 activity facilitates myosin replacement by upregulating MYH gene expression and thereby increasing cytosolic myosin content.


2018 ◽  
Vol 51 (4) ◽  
pp. 1863-1878 ◽  
Author(s):  
Qi Liang ◽  
Yuanyuan Xiao ◽  
Kaihua Liu ◽  
Caigao Zhong ◽  
Ming Zeng ◽  
...  

Background/Aims: Hexavalent chromium [Cr(VI)] pollution has become a global concern for both ecosystems and human health. Our previous study revealed Cr(VI) could induce both apoptosis and autophagy in L-02 hepatocytes. Here, we sought to explore the underlying mechanism of Cr(VI)-induced autophagy and its exact role in cell death. Methods: Autophagy ultrastructure was observed under transmission electron microscope (TEM), autophagy flux was measured with double-tagged mCherry-green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) assay, long-lived protein degradation assay, and LC3II expression assay in the presence of lysosomal inhibitor, bafilomycin A1 (BafA1). Reactive oxygen species (ROS) level was determined using fluorescent probe dichloro-dihydrofluorescein diacetate (DCFH-DA). The expression levels of Beclin-1, LC3, p62/ SQSTM1, and AKT-mammalian target of rapamycin (mTOR) pathway-related molecules including phosphorylation (p)-AKT, AKT, p-mTOR, and mTOR were examined using real-time polymerase chain reaction (RT-PCR) and western blotting. Apoptosis was determined using Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. Results: Our results demonstrated Cr(VI) exposure activated autophagy in L-02 hepatocytes, as evidenced by the accumulation of autophagosomes, the increase of LC3-II and degradation of p62/ SQSTM1, and the enhanced overall degradation of proteins. We also confirmed Cr(VI)-induced LC3-II elevation mainly came from autophagy induction rather than lysosomal degradation impairment. ROS-AKT-mTOR pathway was associated with Cr(VI)-induced autophagy, and ROS scavenger N-acetylcysteine (NAC) pretreatment inhibited Cr(VI)-induced autophagy by alleviating the inhibition of the AKT-mTOR pathway. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine diphosphate (CDP) promoted Cr(VI)-induced apoptotic death. Conclusion: These findings indicated Cr(VI)-induced autophagy protected L-02 hepatocytes from apoptosis through the ROS-AKT-mTOR pathway.


2019 ◽  
Author(s):  
Chi-Yun Lin ◽  
Matthew Romei ◽  
Luke Oltrogge ◽  
Irimpan Mathews ◽  
Steven Boxer

Green fluorescent protein (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all the observed strong correlations among photophysical properties; related subtopics are extensively discussed in Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue this model should also be generally applicable to both biological and non-biological polymethine dyes.<br>


2019 ◽  
Author(s):  
Jeffrey Chang ◽  
Matthew Romei ◽  
Steven Boxer

<p>Double-bond photoisomerization in molecules such as the green fluorescent protein (GFP) chromophore can occur either via a volume-demanding one-bond-flip pathway or via a volume-conserving hula-twist pathway. Understanding the factors that determine the pathway of photoisomerization would inform the rational design of photoswitchable GFPs as improved tools for super-resolution microscopy. In this communication, we reveal the photoisomerization pathway of a photoswitchable GFP, rsEGFP2, by solving crystal structures of <i>cis</i> and <i>trans</i> rsEGFP2 containing a monochlorinated chromophore. The position of the chlorine substituent in the <i>trans</i> state breaks the symmetry of the phenolate ring of the chromophore and allows us to distinguish the two pathways. Surprisingly, we find that the pathway depends on the arrangement of protein monomers within the crystal lattice: in a looser packing, the one-bond-flip occurs, whereas in a tighter packing (7% smaller unit cell size), the hula-twist occurs.</p><p> </p><p> </p><p> </p><p> </p><p> </p><p> </p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document