scholarly journals Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and Antioxidants on Physical Properties, Release Kinetics, and Compostability

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1976
Author(s):  
Adrián Rojas ◽  
Eliezer Velásquez ◽  
Cristian Patiño Vidal ◽  
Abel Guarda ◽  
María José Galotto ◽  
...  

The performance characteristics of polylactic acid (PLA) as an active food packaging film can be highly influenced by the incorporation of active agents (AAs) into PLA, and the type of processing technique. In this review, the effect of processing techniques and the addition of natural AAs on the properties related to PLA performance as a packaging material are summarized and described through a systematic analysis, giving new insights about the relation between processing techniques, types of AA, physical–mechanical properties, barriers, optical properties, compostability, controlled release, and functionalities in order to contribute to the progress made in designing antioxidant and antimicrobial PLA packaging films. The addition of AAs into PLA films affected their optical properties and influenced polymer chain reordering, modifying their thermal properties, functionality, and compostability in terms of the chemical nature of AAs. The mechanical and barrier performance of PLA was affected by the AA’s dispersion degree and crystallinity changes resulting from specific processing techniques. In addition, hydrophobicity and AA concentration also modified the barrier properties of PLA. The release kinetics of AAs from PLA were tuned, modifying diffusion coefficient of the AAs in terms of the different physical properties of the films that resulted from specific processing techniques. Several developments based on the incorporation of antimicrobial and antioxidant substances into PLA have displayed outstanding activities for food protection against microbial growth and oxidation.

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Razieh Niazmand ◽  
Bibi Marzieh Razavizadeh ◽  
Farzaneh Sabbagh

The physical, thermal, mechanical, optical, microstructural, and barrier properties of low-density polyethylene films (LDPE) containing ferula asafoetida leaf and gum extracts were investigated. Results showed a reduction in elasticity and tensile strength with increasing extract concentration in the polymer matrix. The melting temperature and enthalpy increased with increasing concentration of extracts. The films containing extracts had lower L∗ and a∗ and higher b∗ indices. The films containing leaf extract had more barrier potential to UV than the gum extracts. The oxygen permeability in films containing 5% of leaf and gum extracts increased by 2.3 and 2.1 times, respectively. The morphology of the active films was similar to bubble swollen islands, which was more pronounced at higher concentrations of gum and leaf extracts. FTIR results confirmed some chemical interactions of ferula extracts with the polymer matrix. At the end of day 14th, the growth rate of Aspergillus niger and Saccharomyces cerevisea in the presence of the PE-Gum-5 reduced more than PE-Leaf-5 (3.7 and 2.4 logarithmic cycles, respectively) compared to the first day. Our findings showed that active LDPE films have desire thermo-mechanical and barrier properties for food packaging.


2019 ◽  
Vol 28 (2) ◽  
pp. 411-420 ◽  
Author(s):  
Asad Riaz ◽  
Camel Lagnika ◽  
Mohamed Abdin ◽  
Malik Muhammad Hashim ◽  
Waqar Ahmed

2020 ◽  
Vol 37 (4) ◽  
pp. 2000006 ◽  
Author(s):  
Khaled M. Amin ◽  
Abir M. Partila ◽  
Hassan A. Abd El‐Rehim ◽  
Noha M. Deghiedy

Author(s):  
Lorena Rivera-Hernández ◽  
Norberto Chavarría-Hernández ◽  
Ma del Rocío López Cuellar ◽  
Víctor Manuel Martínez-Juárez ◽  
Adriana-Inés Rodríguez-Hernández

Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 662
Author(s):  
Yongliang Zhuang ◽  
Shiyan Ruan ◽  
Hanghang Yao ◽  
Yun Sun

Different composite films composed of tilapia skin collagen (TSC) with Pachyrhizus starch (PS) or rambutan peel phenolics (RPP) were prepared, and the physical properties of these films were determined. The effects of PS and RPP on TSC films were investigated, and our results indicated that PS and RPP could improve the physical properties of TSC films. Opacity and film thickness showed an enhanced trend with increasing PS and RPP contents in TSC films, whereas solubility in water, elongation-at-break (EAB), and water vapor permeability (WVP) showed declining trends. TSC film with 10% PS and 0.5% RPP had the highest tensile strength, and the tensile strength dropped drastically when the content of PS and RPP increased. The light transmittances of the films could decrease with the incorporation of PS and RPP. Differential scanning calorimetry (DSC) demonstrated that the addition of PS and RPP improved the thermal stability of TSC films. In addition, X-ray diffraction indicated that the crystallinity of the films decreased and the amorphous structure of the films tended to become more complex with the addition of PS and RPP. As shown by fourier transform infrared spectroscopy (FTIR) analysis, PS and RPP can strongly interact with TSC, resulting in a modification of its structure. Scanning electron microscope (SEM) analysis showed that there was a good compatibility between TSC, PS, and RPP. The results indicated that TSC film incorporated with 10% PS and 0.5% RPP was an effective method for improve the physical properties of the film. TSC–PS–RPP composite films can be used not only in biomedical applications, but also as active food packaging materials.


Food Control ◽  
2017 ◽  
Vol 76 ◽  
pp. 117-126 ◽  
Author(s):  
Maksym Krepker ◽  
Rotem Shemesh ◽  
Yael Danin Poleg ◽  
Yechezkel Kashi ◽  
Anita Vaxman ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 980 ◽  
Author(s):  
Carla Vilela ◽  
Catarina Moreirinha ◽  
Eddy M. Domingues ◽  
Filipe M. L. Figueiredo ◽  
Adelaide Almeida ◽  
...  

Bacterial nanocellulose (BNC) is becoming an important substrate for engineering multifunctional nanomaterials with singular and tunable properties for application in several domains. Here, antimicrobial conductive nanocomposites composed of poly(sulfobetaine methacrylate) (PSBMA) and BNC were fabricated as freestanding films for application in food packaging. The nanocomposite films were prepared through the one-pot polymerization of sulfobetaine methacrylate (SBMA) inside the BNC nanofibrous network and in the presence of poly(ethylene glycol) diacrylate as cross-linking agent. The ensuing films are macroscopically homogeneous, more transparent than pristine BNC, and present thermal stability up to 265 °C in a nitrogen atmosphere. Furthermore, the films have good mechanical performance (Young’s modulus ≥ 3.1 GPa), high water-uptake capacity (450–559%) and UV-blocking properties. The zwitterion film with 62 wt.% cross-linked PSBMA showed bactericidal activity against Staphylococcus aureus (4.3–log CFU mL−1 reduction) and Escherichia coli (1.1–log CFU mL−1 reduction), and proton conductivity ranging between 1.5 × 10−4 mS cm−1 (40 °C, 60% relative humidity (RH)) and 1.5 mS cm−1 (94 °C, 98% RH). Considering the current set of properties, PSBMA/BNC nanocomposites disclose potential as films for active food packaging, due to their UV-barrier properties, moisture scavenging ability, and antimicrobial activity towards pathogenic microorganisms responsible for food spoilage and foodborne illness; and also for intelligent food packaging, due to the proton motion relevant for protonic-conduction humidity sensors that monitor food humidity levels.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 368 ◽  
Author(s):  
Susana Guzman-Puyol ◽  
Luca Ceseracciu ◽  
Giacomo Tedeschi ◽  
Sergio Marras ◽  
Alice Scarpellini ◽  
...  

All-cellulose composites with a potential application as food packaging films were prepared by dissolving microcrystalline cellulose in a mixture of trifluoroacetic acid and trifluoroacetic anhydride, adding cellulose nanofibers, and evaporating the solvents. First, the effect of the solvents on the morphology, structure, and thermal properties of the nanofibers was evaluated by atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), respectively. An important reduction in the crystallinity was observed. Then, the optical, morphological, mechanical, and water barrier properties of the nanocomposites were determined. In general, the final properties of the composites depended on the nanocellulose content. Thus, although the transparency decreased with the amount of cellulose nanofibers due to increased light scattering, normalized transmittance values were higher than 80% in all the cases. On the other hand, the best mechanical properties were achieved for concentrations of nanofibers between 5 and 9 wt.%. At higher concentrations, the cellulose nanofibers aggregated and/or folded, decreasing the mechanical parameters as confirmed analytically by modeling of the composite Young’s modulus. Finally, regarding the water barrier properties, water uptake was not affected by the presence of cellulose nanofibers while water permeability was reduced because of the higher tortuosity induced by the nanocelluloses. In view of such properties, these materials are suggested as food packaging films.


Sign in / Sign up

Export Citation Format

Share Document