scholarly journals Spatial–Temporal Response of Reactive Oxygen Species and Salicylic Acid Suggest Their Interaction in Pumpkin Rootstock-Induced Chilling Tolerance in Watermelon Plants

Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2024
Author(s):  
Fei Cheng ◽  
Min Gao ◽  
Junyang Lu ◽  
Yuan Huang ◽  
Zhilong Bie

Grafting with pumpkin rootstock could improve chilling tolerance in watermelon, and salicylic acid (SA) as a signal molecule is involved in regulating plant tolerance to chilling and other abiotic stresses. To clarify the mechanism in pumpkin rootstock-induced systemic acquired acclimation in grafted watermelon under chilling stress, we used self-grafted (Cl/Cl) and pumpkin rootstock-grafted (Cl/Cm) watermelon seedlings to study the changes in lipid peroxidation, photosystem II (PSII) activity and antioxidant metabolism, the spatio–temporal response of SA biosynthesis and H2O2 accumulation to chilling, and the role of H2O2 signal in SA-induced chilling tolerance in grafted watermelon. The results showed that pumpkin rootstock grafting promoted SA biosynthesis in the watermelon scions. Chilling induced hydrolysis of conjugated SA into free SA in the roots and accumulation of free SA in the leaves in Cl/Cm plants. Further, pumpkin rootstock grafting induced early response of antioxidant enzyme system in the roots and increased activities of ascorbate peroxidase and glutathione reductase in the leaves, thus maintaining cellular redox homeostasis. Exogenous SA improved while the inhibition of SA biosynthesis reduced chilling tolerance in Cl/Cl seedlings. The application of diphenyleneiodonium (DPI, inhibitor of NADPH oxidase) and dimethylthiourea (DMTU, H2O2 scavenger) decreased, while exogenous H2O2 improved the PSII activity in Cl/Cl plants under chilling stress. Additionally, the decrease of the net photosynthetic rate in DMTU- and DPI-pretreated Cl/Cl plants under chilling conditions could be alleviated by subsequent application of H2O2 but not SA. In conclusion, pumpkin rootstock grafting induces SA biosynthesis and redistribution in the leaves and roots and participates in the regulation of antioxidant metabolism probably through interaction with the H2O2 signal, thus improving chilling tolerance in watermelon.

2007 ◽  
Vol 87 (3) ◽  
pp. 581-585 ◽  
Author(s):  
Ahmet Korkmaz ◽  
Murat Uzunlu ◽  
Ali Riza Demirkiran

Salicylic acid (SA) is a common plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was, therefore, conducted to test whether acetyl salicylic acid (ASA) application at various concentrations through seed immersion or foliar spray would protect muskmelon [Cucumis melo L. (Reticulatus Group)] seedlings subjected to chilling stress. Twenty-one-day-old plants pre-treated with ASA (0, 0.1, 0.25, 0.50 or 1.0 mM) were subjected to chilling stress for 72 h at 3 ± 0.5°C. ASA, applied either through seed immersion or foliar spray, was effective within the range of 0.1 to 1 mM in inducing tolerance to chilling stress in muskmelon seedlings; however, there was no significant difference between application methods. ASA significantly and curvilinearly affected all seedling growth and stress indicator variables tested except shoot dry weight. The best protection was obtained from seedlings pre-treated with 0.5 mM ASA. The highest ASA concentration used was slightly less effective in providing chilling stress protection. Even though both methods provided similar means of protection, due to its simplicity and practicality, immersion of muskmelon seeds prior to sowing in 0.5 mM ASA would be a more desirable method to induce tolerance to chilling stress. Key words: Cucumis melo, aspirin, chilling stress tolerance, gas exchange, electrolyte leakage


Botany ◽  
2012 ◽  
Vol 90 (9) ◽  
pp. 845-855 ◽  
Author(s):  
Yang Wang ◽  
Jin Hu ◽  
Guochen Qin ◽  
Huawei Cui ◽  
Qitian Wang

One kind of biologically active salicylic acid (SA) analogue (acetylsalicylic acid, ASA) and two inactive compounds (4-aminosalicylic acid and 4-aminobenzoic acid), along with SA were chosen to evaluate their role in inducing chilling tolerance of two different chilling-tolerant maize ( Zea mays L.) inbred lines. These compounds were applied as seed treatments or as a hydroponic application. The results showed that four compounds had no significant effect on germination of maize seeds; however, SA or ASA soaking treatments significantly increased the root length, shoot height, and shoot and root dry weights of seedlings grown under chilling stress. Hydroponic applications of SA or ASA significantly alleviated the accumulation of malondialdehyde, hydrogen peroxide, and superoxide radicals in roots and leaves of both lines under chilling stress, and the applications also increased the photosynthetic pigments, including chlorophyll a, chlorophyll b, and carotenoids. However, 4-aminosalicylic acid and 4-aminobenzoic acid applications had no significant effect in ameliorating the growth inhibition of seedlings under chilling stress. This study showed that SA and ASA significantly induced the chilling tolerance of maize; however, 4-aminosalicylic acid and 4-aminobenzoic acid were not effective in inducing tolerance to chilling stress. The results suggest that only SA analogues with biological activity may have the ability to induce chilling tolerance of maize.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Fu ◽  
Yi-Qing Feng ◽  
Xiao-Wei Zhang ◽  
Yan-Yan Zhang ◽  
Huan-Gai Bi ◽  
...  

Salicylic acid (SA) has been proven to be a multifunctional signaling molecule that participates in the response of plants to abiotic stresses. In this study, we used cold-sensitive cucumber and cold-tolerant pumpkin as experimental materials to examine the roles of SA in root–shoot communication responses to aerial or/and root-zone chilling stress in own-root and hetero-root grafted cucumber and pumpkin plants. The results showed that pumpkin (Cm) rootstock enhanced the chilling tolerance of grafted cucumber, as evidenced by the observed lower levels of electrolyte leakage (EL), malondialdehyde (MDA), and higher photosynthetic rate (Pn) and gene expression of Rubisco activase (RCA). However, cucumber (Cs) rootstock decreased the chilling tolerance of grafted pumpkins. Cs/Cm plants showed an increase in the mRNA expression of C-repeat-binding factor (CBF1), an inducer of CBF expression (ICE1), and cold-responsive (COR47) genes and CBF1 protein levels in leaves under 5/25 and 5/5°C stresses, or in roots under 25/5 and 5/5°C stresses, respectively, compared with the Cs/Cs. Chilling stress increased the endogenous SA content and the activity of phenylalanine ammonia-lyase (PAL), and the increase in SA content and activity of PAL in Cs/Cm plants was much higher than in Cs/Cs plants. Transcription profiling analysis revealed the key genes of SA biosynthesis, PAL, ICS, and SABP2 were upregulated, while SAMT, the key gene of SA degradation, was downregulated in Cs/Cm leaves, compared with Cs/Cs leaves under chilling stress. The accumulation of SA in the Cs/Cm leaves was mainly attributed to an increase in SA biosynthesis in leaves and that in transport from roots under aerial and root-zone chilling stress, respectively. In addition, exogenous SA significantly upregulated the expression level of cold-responsive (COR) genes, enhanced actual photochemical efficiency (ΦPSII), maximum photochemical efficiency (Fv/Fm), and Pn, while decreased EL, MDA, and CI in grafted cucumber. These results suggest that SA is involved in rootstock–scion communication and grafting-induced chilling tolerance by upregulating the expression of COR genes in cucumber plants under chilling stress.


2018 ◽  
Vol 45 (12) ◽  
pp. 1173 ◽  
Author(s):  
Xinyuan Li ◽  
Lijie Li ◽  
Shiyu Zuo ◽  
Jing Li ◽  
Shi Wei

The ABA-stress-ripening (ASR) gene is an abiotic stress-response gene that is widely present in higher plants. The expression of ASR was recently shown to effectively improve plant tolerance to several abiotic stresses. However, the role of ASR during chilling stress in maize (Zea mays L.) is unclear. In this study, we tested two maize varieties under chilling treatment. Our results showed that Jinyu 5 (JY5), a chilling-sensitive variety, had lower maximum PSII efficiency (Fv/Fm) and higher lipid peroxidation levels than Jidan 198 (JD198) under chilling conditions. At the same time, the enzymes superoxide dismutase (SOD) and peroxidase (POD) were more active in JD198 than in JY5 under chilling conditions. In addition, exogenous ABA spray pretreatments enhanced the chilling tolerance of maize, showing results such as increased Fv/Fm ratios, and SOD and POD activity; significantly reduced lipid peroxidation levels and increased expression of ZmASR1 in both JD198 and JY5 under chilling conditions. Moreover, when the ZmASR1 expression levels in the two maize varieties were compared, the chilling-sensitive line JY5 had significantly lower expression in both the leaves and roots than JD198 under chilling stress, indicating that the expression of ZmASR1 is a chilling response option in plants. Furthermore, we overexpressed ZmASR1 in JY5; this resulted in enhanced maize chilling tolerance, which reduced the decreases in Fv/Fm and the malondialdehyde content and enhanced SOD and POD activity. Overall, these results suggest that ZmASR1 expression plays a protective role against chilling stress in plants.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 657
Author(s):  
Reda E. Abdelhameed ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rania S. Shehata

Considering the detrimental effects of salt stress on the physiological mechanisms of plants in terms of growth, development and productivity, intensive efforts are underway to improve plant tolerance to salinity. Hence, an experiment was conducted to assess the impact of the foliar application of salicylic acid (SA; 0.5 mM) on the physiological traits of fenugreek (Trigonellafoenum-graecum L.) plants grown under three salt concentrations (0, 75, and 150 mM NaCl). An increase in salt concentration generated a decrease in the chlorophyll content index (CCI); however, the foliar application of SA boosted the CCI. The malondialdehyde content increased in salt-stressed fenugreek plants, while a reduction in content was observed with SA. Likewise, SA application induced an accumulation of proline, total phenolics, and flavonoids. Moreover, further increases in total free amino acids and shikimic acid were observed with the foliar application of SA, in either control or salt-treated plants. Similar results were obtained for ascorbate peroxidase, peroxidase, polyphenol oxidase, and catalase with SA application. Hence, we concluded that the foliar application of SA ameliorates salinity, and it is a growth regulator that improves the tolerance of fenugreek plants under salt stress.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dan Jiang ◽  
Bin Lu ◽  
Liantao Liu ◽  
Wenjing Duan ◽  
Yanjun Meng ◽  
...  

Abstract Background As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0–500 μM MT treatments with salt stress induced by treatment with 150 mM NaCl. Results Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). Conclusions Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Xiangli Sun ◽  
Zebin Yuan ◽  
Bo Wang ◽  
Liping Zheng ◽  
Jianzhong Tan ◽  
...  

Abstract Background Chilling stress is the major factor limiting plant productivity and quality in most regions of the world. In the present study, we aimed to evaluate the effects of putrescine (Put) and polyamine inhibitor d-arginine (d-arg) on the chilling tolerance of anthurium (Anthurium andraeanum). Results Anthurium seedlings were pretreated with five different concentrations of Put solution or d-arg solution. Subsequently, the seedlings were subjected to chilling stress at 6 °C for 3 days, followed by a recovery at 25 °C for 1 day. Relative permeability of the plasma membrane, as well as physiological and morphologic parameters was assessed during the experiments. Additionally, transcriptome sequencing and patterns of differential gene expression related to chilling response were analyzed by qRT-PCR in 1.0 mM Put-treated and untreated anthurium seedlings. Results indicated that the supplementation of exogenous Put decreased the extent of membrane lipid peroxidation and the accumulation of malondialdehyde (MDA), promoted the antioxidant activities and proline content and maintained the morphologic performances compared with the control group. This finding indicated that the application of exogenous Put could effectively decrease the injury and maintain the quality of anthurium under chilling conditions. In contrast, the treatment of d-arg exhibited the opposite effects, which confirmed the effects of Put. Conclusions This research provided a possible approach to enhance the chilling tolerance of anthurium and reduce the energy consumption used in anthurium production.


2016 ◽  
Vol 96 (5) ◽  
pp. 796-807
Author(s):  
Yi-ping Chen ◽  
Qiang Liu ◽  
Dong Chen

To investigate the mechanism by which laser irradiation enhances the chilling tolerance of wheat seedlings, seeds were exposed to different treatments, and biochemical parameters were measured. Compared with the control group, chilling stress (CS) led to an increase in the concentrations of malondialdehyde (MDA) and H2O2, and decreases in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), peroxidase (POD), and nitric oxide synthase (NOS), and the concentrations of nitric oxide (NO) and protein. Treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), sodium tungstate (ST), and NG-nitro-L-arginine methyl ester (L-NAME) followed by CS resulted in further increases in the concentrations of MDA and H2O2 and further decreases in the other parameters. However, treatment with PTIO, ST, and L-NAME followed by laser irradiation had the opposite effects on these parameters. When the seeds were treated with PTIO, ST, and L-NAME followed by laser and CS, the concentrations of MDA and H2O2 were significantly lower and the other parameters were higher than in the PTIO, ST, and L-NAME plus CS groups. These results suggest that CO2 laser irradiation enhances the chilling tolerance of wheat seedlings by stimulating endogenous NO synthesis.


2021 ◽  
Author(s):  
Shiva - Najafi Kakavand ◽  
Naser - Karimi ◽  
Hamid-Reza - Ghasempour ◽  
Ali - Raza ◽  
Mehrdad - Chaichi ◽  
...  

Abstract Salicylic acid (SA) and jasmonic acid (JA) as plant growth regulators (PGRs) have the potential to ameliorate plant development and tolerance to deleterious effects of toxic metals like nickel (Ni). Therefore, the current study was carried out to evaluate SA and JA's interactive effect on the root antioxidative response of two Alyssum inflatum Nyár. populations against Ni-toxicity. Two A. inflatum species under Ni-stress conditions (0, 100, 200, and 400 µM) were exposed to alone or combined levels of SA (0, 50, and 200 µM) and JA (0, 5, and 10 µM) treatments. Results showed that high Ni doses reduced the roots fresh weight (FW) in two populations than control; however, the use of external PGRs had ameliorated roots biomass by mitigated Ni-toxicity. Under Ni toxicity, SA and JA, especially their combination, induced high Ni accumulation in plants' roots. Moreover, the application of SA and JA alone, as well as combined SA + JA, was found to be effective in the scavenging of hydrogen peroxide (H2O2) by improving the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in both populations under Ni-toxicity. Overall, our results manifest that SA and JA's external use, especially combined SA + JA treatments, ameliorate root biomass and plant tolerance by restricting translocation Ni to the shoot, accumulating in roots, and also enhancing antioxidant defense systems.


Sign in / Sign up

Export Citation Format

Share Document