scholarly journals The Effects of Dietary Protein Supplementation on Exercise-Induced Inflammation and Oxidative Stress: A Systematic Review of Human Trials

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Abrar Alhebshi ◽  
Nehal Alsharif ◽  
Josh Thorley ◽  
Lewis J. James ◽  
Tom Clifford

This systematic review examined the effects of whole protein and commonly consumed amino acid supplements on markers of exercise-induced inflammation and oxidative stress and was reported according to the PRISMA guidelines. MEDLINE and SPORTDiscus were searched from inception until June 2021. The inclusion criteria were randomized clinical trials in humans, healthy adult participants (≥18 years), dietary protein/amino acid interventions, and measurements of oxidative stress/the redox status or inflammation post-exercise. The Cochrane Collaboration risk of bias 2 tool was used to critically appraise the studies. Data extracted from thirty-four studies were included in the systematic review (totaling 757 participants with only 10 females; age range 19–40 years). The included trials examined five types of whole protein and seven different amino acids supplements; most studies (n = 20) failed to identify statistically significant effects on markers of inflammation or oxidative stress after exercise; some (n = 14) showed either anti-inflammatory or antioxidant effects on some, but not all, markers. In conclusion, we found weak and inconsistent evidence that dietary protein/amino acid interventions can modify exercise-induced changes in oxidative stress and inflammation. However, given that these were not the primary outcomes in many of the included studies and many had design limitations, further research is warranted (Open Science Framework registration number: 10.17605/OSF.IO/AGUR2).

2019 ◽  
Vol 21 (4) ◽  
pp. 397
Author(s):  
Suelen Maiara Medeiros da Silva ◽  
Bárbara Cristovão Carminati ◽  
Valfredo De Almeida Santos Junior ◽  
Pablo Christiano Barboza Lollo

AbstractThe interest of the supplementation market for the soy protein consumption  to optimize physical and metabolic performance after exercise is increasing. However, evidence suggests that the  soy protein ingestion has lower anabolic properties when compared with whey protein. The purpose of this systematic review was to compare the effects of whey protein and soy protein supplementation on the  muscle functions maintenance after exercise. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles were searched for in the Pubmed database and included studies comparing the effects of soy protein and whey protein consumption on protein synthesis, lean mass gain and oxidative stress reduction in response to endurance or resistance training. Thirteen trials were included in this review. The results showed that the whey protein consumption is superior to that of soy protein with respect to protein synthesis and lean mass gain, but soy protein showed superior results in reducing oxidative stress. Future research comparing both soy and whey protein are needed to define protein source to be used in nutritional interventions to protein synthesis, lean mass gain and oxidative stress in different populations. Keywords: Soybean Proteins. Milk Proteins. Protein Biosynthesis. Hypertrophy. ResumoO interesse do mercado de suplementação pelo consumo de proteína de soja para otimizar o desempenho físico e metabólico após o exercício está aumentando. No entanto, evidências sugerem que a ingestão da proteína de soja tem propriedades anabólicas mais baixas quando comparada à proteína do soro do leite. O objetivo desta revisão sistemática foi comparar os efeitos da suplementação com whey protein e proteína de soja na manutenção das funções musculares após o exercício. Esta revisão foi realizada usando os Itens de Relatório Preferidos para Revisões Sistemáticas e Meta-Análises (PRISMA). Os artigos foram pesquisados na base de dados Pubmed e incluíram estudos comparando os efeitos da proteína de soja e do consumo de proteínas do soro na síntese protéica, ganho de massa magra e redução do estresse oxidativo em resposta ao treinamento de resistência ou resistência. Treze ensaios foram incluídos nesta revisão. Os resultados mostraram que o consumo de proteína de soro é superior ao da proteína de soja em relação à síntese protéica e ao ganho de massa magra, mas a proteína de soja apresentou resultados superiores na redução do estresse oxidativo. Pesquisas futuras comparando a soja e a proteína do soro do leite são necessárias para definir a fonte protéica a ser usada em intervenções nutricionais para a síntese protéica, ganho de massa magra e estresse oxidativo em diferentes populações. Palavras-chave: Proteínas de Soja. Proteínas do Leite. Biossíntese de Proteínas. Hipertrofia.


2019 ◽  
Vol 77 (9) ◽  
pp. 630-645 ◽  
Author(s):  
Taylor K Bloedon ◽  
Rock E Braithwaite ◽  
Imogene A Carson ◽  
Dorothy Klimis-Zacas ◽  
Robert A Lehnhard

Abstract Context Supplementing with fruits high in anthocyanins to reduce exercise-induced oxidative stress and inflammation has produced mixed results. Objective This systematic review and meta-analysis aims to discuss the impact of whole fruits high in anthocyanins, including processing methods and the type and amount of fruit, on inflammation and oxidative stress. Data Sources PICOS reporting guidelines and a customized coding scheme were used to search 5 databases (SPORTDiscus, Science Direct, Web of Science [BIOSIS], Medline [Pubmed], and the Cochrane Collaboration) with additional cross-referencing selection. Data Extraction A random-effects meta-analysis was used to measure effects of the fruit supplements with 3 statistics; the QTotal value based on a χ2 distribution, τ2 value, and I2 value were used to determine homogeneity of variances on 22 studies (out of 807). Outliers were identified using a relative residual value. Results A small significant negative summary effect across the sum of all inflammatory marker outcomes (P < 0.001) and a moderate negative effect for the sum of all oxidative stress marker outcomes (P = 0.036) were found. Moderator analyses did not reveal significant (P > 0.05) differences between subgrouping variables. Conclusions Results indicate that consumption of whole fruit high in anthocyanins can be beneficial for reducing inflammation and oxidative stress.


2021 ◽  
pp. 194173812110364
Author(s):  
Daniel Rojano-Ortega ◽  
José Peña Amaro ◽  
Antonio J. Berral-Aguilar ◽  
Francisco J. Berral-de la Rosa

Context: Beetroots have antioxidant and anti-inflammatory properties, which may help attenuate inflammation and oxidative stress, enhancing recovery from exercise-induced muscle damage (EIMD). Objective: To evaluate the effects of beetroot supplementation on oxidative stress, inflammation, and recovery after EIMD. Data Sources: SPORTDiscus, PubMed, Web of Science, and Scopus databases were searched, and hand-searching was performed by looking to relevant studies that were cited in other studies. Study Selection: For a study to be included in this review, the following inclusion criteria had to be met: (1) research conducted with human participants, (2) original articles in peer-reviewed publications, (3) original studies that had investigated beetroot supplementation intervention on muscle damage and recovery, (4) research conducted with 1 control/placebo group, and (5) articles published from inception to October 2020. Study Design: Systematic review using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. Level of Evidence: Level 3. Data Extraction: Two of the 4 authors independently extracted data and assessed the methodological quality of the articles with the PEDro scale. All discrepancies were resolved through a consensus meeting. Results: A total of 9 studies were included in this review. The methodological quality of the included studies ranged from moderate to high. Most of the studies found a better recovery of functional variables and muscle soreness, but improvements in markers of muscle damage, inflammation, and oxidative stress were not reported. Conclusion: The existing evidence suggests that a short-term beetroot supplementation has the potential to accelerate recovery of functional measures and muscle soreness, but further research is needed to clarify if a longer supplementation period (with some days before exercise and some days after) could also promote recovery of markers of muscle damage, inflammation, and oxidative stress.


2021 ◽  
Vol 22 (4) ◽  
pp. 1707
Author(s):  
Sebastian Granitzer ◽  
Raimund Widhalm ◽  
Martin Forsthuber ◽  
Isabella Ellinger ◽  
Gernot Desoye ◽  
...  

The placental barrier can protect the fetus from contact with harmful substances. The potent neurotoxin methylmercury (MeHg), however, is very efficiently transported across the placenta. Our previous data suggested that L-type amino acid transporter (LAT)1 is involved in placental MeHg uptake, accepting MeHg-L-cysteine conjugates as substrate due to structural similarity to methionine. The aim of the present study was to investigate the antioxidant defense of placental cells to MeHg exposure and the role of LAT1 in this response. When trophoblast-derived HTR-8/SVneo cells were LAT1 depleted by siRNA-mediated knockdown, they accumulated less MeHg. However, they were more susceptible to MeHg-induced toxicity. This was evidenced in decreased cell viability at a usually noncytotoxic concentration of 0.03 µM MeHg (~6 µg/L). Treatment with ≥0.3 µM MeHg increased cytotoxicity, apoptosis rate, and oxidative stress of HTR-8/SVneo cells. These effects were enhanced under LAT1 knockdown. Reduced cell number was seen when MeHg-exposed cells were cultured in medium low in cysteine, a constituent of the tripeptide glutathione (GSH). Because LAT1-deficient HTR-8/SVneo cells have lower GSH levels than control cells (independent of MeHg treatment), we conclude that LAT1 is essential for de novo synthesis of GSH, required to counteract oxidative stress. Genetic predisposition to decreased LAT1 function combined with MeHg exposure could increase the risk of placental damage.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1175
Author(s):  
Johanna Helmstädter ◽  
Karin Keppeler ◽  
Franziska Aust ◽  
Leonie Küster ◽  
Katie Frenis ◽  
...  

Sepsis causes high mortality in the setting of septic shock. LEADER and other trials revealed cardioprotective and anti-inflammatory properties of glucagon-like peptide-1 (GLP-1) analogs like liraglutide (Lira). We previously demonstrated improved survival in lipopolysaccharide (LPS)-induced endotoxemia by inhibition of GLP-1 degradation. Here we investigate the effects of Lira in the polymicrobial sepsis model of cecal ligation and puncture (CLP). C57BL/6J mice were intraperitoneally injected with Lira (200 µg/kg/d; 3 days) and sepsis induced by CLP after one day of GLP-1 analog treatment. Survival and body temperature were monitored. Aortic vascular function (isometric tension recording), protein expression (immunohistochemistry and dot blot) and gene expression (qRT-PCR) were determined. Endothelium-dependent relaxation in the aorta was impaired by CLP and correlated with markers of inflammation (e.g., interleukin 6 and inducible nitric oxide synthase) and oxidative stress (e.g., 3-nitrotyrosine) was higher in septic mice, all of which was almost completely normalized by Lira therapy. We demonstrate that the GLP-1 analog Lira ameliorates sepsis-induced endothelial dysfunction by the reduction of vascular inflammation and oxidative stress. Accordingly, the findings suggest that the antioxidant and anti-inflammatory effects of GLP-1 analogs may be a valuable tool to protect the cardiovascular system from dysbalanced inflammation in polymicrobial sepsis.


Sign in / Sign up

Export Citation Format

Share Document