scholarly journals Fatty Acid Oxidation and Pro-Resolving Lipid Mediators Are Related to Male Infertility

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
Cinzia Signorini ◽  
Elena Moretti ◽  
Daria Noto ◽  
Lucia Micheli ◽  
Rosetta Ponchia ◽  
...  

Specialized pro-resolving lipid mediators regulate the resolution of acute inflammation. They are formed by enzymatic oxygenation of polyunsaturated fatty acids and are divided into families including lipoxins, resolvins, protectins, and maresins. Resolvin D1 (RvD1), produced by docosahexaenoic acid, exerts anti-inflammatory and pro-resolving activities. This research aimed to investigate the implication of seminal RvD1 in human infertility. Infertile patients (n° 67) were grouped based on pathological reproductive conditions as idiopathic infertility, varicocele, and leukocytospermia; the fourth group was composed of fertile men (n° 18). Sperm characteristics were evaluated by light microscopy (WHO guidelines) and by transmission electron microscopy (TEM). The seminal levels of RvD1 and F2-isoprostane (F2-IsoPs) were dosed. In twenty men (6 fertile men, 8 with varicocele, 6 with leukocytospermia) seminal phospholipase A2, iron, cholesterol, transferrin, estradiol, ferritin, testosterone, and sperm membrane fatty acids were detected. The results indicated that: (i) RvD1 amount was positively correlated with F2-IsoPs and reduced sperm quality; (ii) RvD1 levels were significantly higher in patients with leukocytospermia, varicocele, and idiopathic infertility compared to fertile men; (iii) RvD1 increased along with other markers of oxidative stress and inflammation as fatty acids content and clinical biomarkers. This study suggests a panel of inflammatory markers and lipid mediators for a diagnosis of inflammatory status and a subsequent appropriate therapeutic approach.

2020 ◽  
Vol 28 (1) ◽  
pp. 91-101
Author(s):  
Giulia Collodel ◽  
Cinzia Signorini ◽  
Fabiola Nerucci ◽  
Laura Gambera ◽  
Francesca Iacoponi ◽  
...  

AbstractThe evaluation of the seminal plasma plays a relevant role in the definition of male infertility and in assisted reproduction outcomes; for this reason, it would be recommended to find biochemical markers able to characterize sperm pathology. In this study, 53 infertile patients (grouped by the presence leukocytospermia, idiopathic infertility, or varicocele) and 10 fertile men were selected. Spermiogram was performed by light microscopy, and sperm ultrastructure was evaluated by transmission electron microscopy (TEM) mathematically elaborated. Testosterone (TESTO), estradiol (E2), ferritin (FERR), iron (Fe), transferrin (TRSF), triglycerides (TRG), cholesterol (CHOL), and isoprostanes (F2-IsoPs) were detected in seminal plasma. Sperm characteristics and biochemical components were correlated by Spearman’s rank correlation coefficient in the whole population and in each group. The levels of TESTO and E2 were positively correlated with sperm quality in particular, and E2 was correlated with fertility index expressing the number of sperm free of ultrastructural defects evaluated by TEM. On the contrary, the indices of iron metabolism (FERR, Fe, and TRSF) were positively associated with low sperm quality and sperm necrosis, particularly in leukocytospermia and varicocele groups, pathologies in which an inflammatory status and oxidative stress condition are present. The study of the seminal plasma composition deserves attention because the levels of the various components seem to be associated with specific reproductive pathologies.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3384
Author(s):  
Francisca Herrera Herrera Vielma ◽  
Rodrigo Valenzuela ◽  
Luis A. Videla ◽  
Jessica Zúñiga-Hernández

In recent years, the beneficial effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) intake on human health has been widely accepted in the field of immunonutrition. Today, we find a diversity of supplements based on n-3 PUFAs and/or minerals, vitamins and other substances. The main objective of this review is to discuss the importance of n-3 PUFAs and their derivatives on immunity and inflammatory status related to liver disease and other non-communicable illnesses. Based on the burden of liver diseases in 2019, more than two million people die from liver pathologies per year worldwide, because it is the organ most exposed to agents such as viruses, toxins and medications. Consequently, research conducted on n-3 PUFAs for liver disease has been gaining prominence with encouraging results, given that these fatty acids have anti-inflammatory and cytoprotective effects. In addition, it has been described that n-3 PUFAs are converted into a novel species of lipid intermediaries, specialized pro-resolving mediators (SPMs). At specific levels, SPMs improve the termination of inflammation as well as the repairing and regeneration of tissues, but they are deregulated in liver disease. Since evidence is still insufficient to carry out pharmacological trials to benefit the resolution of acute inflammation in non-communicable diseases, there remains a call for continuing preclinical and clinical research to better understand SPM actions and outcomes.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 768
Author(s):  
Maddalena Sguizzato ◽  
Francesca Ferrara ◽  
Supandeep Singh Hallan ◽  
Anna Baldisserotto ◽  
Markus Drechsler ◽  
...  

Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


2021 ◽  
Vol 22 (9) ◽  
pp. 4356
Author(s):  
Eva Knuplez ◽  
Eva Maria Sturm ◽  
Gunther Marsche

Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and ‘pro-inflammatory’ phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.


Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 322
Author(s):  
Jae-Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Šestan-Peša ◽  
Nicole Kilian ◽  
...  

In the presence of high abundance of exogenous fatty acids, cells either store fatty acids in lipid droplets or oxidize them in mitochondria. In this study, we aimed to explore a novel and direct role of mitochondrial fission in lipid homeostasis in HeLa cells. We observed the association between mitochondrial morphology and lipid droplet accumulation in response to high exogenous fatty acids. We inhibited mitochondrial fission by silencing dynamin-related protein 1(DRP1) and observed the shift in fatty acid storage-usage balance. Inhibition of mitochondrial fission resulted in an increase in fatty acid content of lipid droplets and a decrease in mitochondrial fatty acid oxidation. Next, we overexpressed carnitine palmitoyltransferase-1 (CPT1), a key mitochondrial protein in fatty acid oxidation, to further examine the relationship between mitochondrial fatty acid usage and mitochondrial morphology. Mitochondrial fission plays a role in distributing exogenous fatty acids. CPT1A controlled the respiratory rate of mitochondrial fatty acid oxidation but did not cause a shift in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


Sign in / Sign up

Export Citation Format

Share Document