scholarly journals Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Miguel Rebollo-Hernanz ◽  
Yolanda Aguilera ◽  
Maria A. Martin-Cabrejas ◽  
Elvira Gonzalez de Gonzalez de Mejia

The cocoa shell is a by-product that may be revalorized as a source of bioactive compounds to prevent chronic cardiometabolic diseases. This study aimed to investigate the phytochemicals from the cocoa shell as targeted compounds for activating fibroblast growth factor 21 (FGF21) signaling and regulating non-alcoholic fatty liver disease (NAFLD)-related biomarkers linked to oxidative stress, mitochondrial function, and metabolism in hepatocytes. HepG2 cells treated with palmitic acid (PA, 500 µmol L−1) were used in an NAFLD cell model. Phytochemicals from the cocoa shell (50 µmol L−1) and an aqueous extract (CAE, 100 µg mL−1) enhanced ERK1/2 phosphorylation (1.7- to 3.3-fold) and FGF21 release (1.4- to 3.4-fold) via PPARα activation. Oxidative stress markers were reduced though Nrf-2 regulation. Mitochondrial function (mitochondrial respiration and ATP production) was protected by the PGC-1α pathway modulation. Cocoa shell phytochemicals reduced lipid accumulation (53–115%) and fatty acid synthase activity (59–93%) and prompted CPT-1 activity. Glucose uptake and glucokinase activity were enhanced, whereas glucose production and phosphoenolpyruvate carboxykinase activity were diminished. The increase in the phosphorylation of the insulin receptor, AKT, AMPKα, mTOR, and ERK1/2 conduced to the regulation of hepatic mitochondrial function and energy metabolism. For the first time, the cocoa shell phytochemicals are proved to modulate FGF21 signaling. Results demonstrate the in vitro preventive effect of the phytochemicals from the cocoa shell on NAFLD.

2021 ◽  
Vol 2 (1) ◽  
pp. 25
Author(s):  
Miguel Rebollo-Hernanz ◽  
Yolanda Aguilera ◽  
Maria A. Martin-Cabrejas ◽  
Elvira Gonzalez de Mejia

This research aimed to assess the impact of an aqueous extract from the cocoa shell and its major phytochemicals on preventing oxidative stress and mitochondrial dysfunction in hepatocytes using an in vitro model of nonalcoholic fatty liver disease (NAFLD). The phytochemicals from cocoa shell were extracted using water and characterized by UPLC-MS/MS analysis. HepG2 cells were cotreated with either the aqueous extract from cocoa shell (CAE, 20–100 µg mL−1) or 10–50 µmol L−1 of pure theobromine, protocatechuic acid, procyanidin B2, epicatechin, and catechin in the presence or absence of palmitic acid (PA, 500 µmol L−1) to mimic NAFLD conditions in vitro. Biomarkers of mitochondrial function and oxidative stress were evaluated 24 h after the cotreatment in cell supernatants and lysates using chemical, biochemical, and immunochemical techniques. CAE and the phytochemicals therein significantly (p < 0.05) protected mitochondrial content (15–100%) and preserved mitochondrial function, promoting O2 consumption (1.2- to 1.8-fold) and ATP production (1.3- to 2.1-fold). Phytochemicals from cocoa shell significantly (p < 0.05) decreased PA-triggered oxidative stress. The mitochondrial membrane potential was maintained (62–100%), and the production of mitochondrial superoxide (26–100%) and total ROS (17–100%) was abrogated. CAE significantly (p < 0.05) modulated cell signaling pathways associated with ROS production and mitochondrial dysfunction, including an increase in the phosphorylation of ERK1/2 (2.8-fold), protein kinase B (AKT) (2.8-fold), GSK3 (2.3-fold), Raf-1 (1.9-fold), and mTOR (1.7-fold). In conclusion, results suggested that the cocoa shell’s phytochemicals could protect mitochondrial liver function and alleviate oxidative stress by modulating key pathways involved in their regulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Cuilan Hou ◽  
Juan Chen ◽  
Yuqi Zhao ◽  
Yanhua Niu ◽  
Shujia Lin ◽  
...  

Aims. This study is aimed at examining whether fatty acid synthase (FAS) can regulate mitochondrial function in hypoxia-induced pulmonary arterial hypertension (PAH) and its related mechanism. Results. The expression of FAS significantly increased in the lung tissue of mice with hypoxia-induced PAH, and its pharmacological inhibition by C75 ameliorated right ventricle cardiac function as revealed by echocardiographic analysis. Based on transmission electron microscopy and Seahorse assays, the mitochondrial function of mice with hypoxia was abnormal but was partially reversed after C75 injection. In vitro studies also showed an increase in the expression of FAS in hypoxia-induced human pulmonary artery smooth muscle cells (HPASMCs), which could be attenuated by FAS shRNA as well as C75 treatment. Meanwhile, C75 treatment reversed hypoxia-induced oxidative stress and activated PI3K/AKT signaling. shRNA-mediated inhibition of FAS reduced its expression and oxidative stress levels and improved mitochondrial respiratory capacity and ATP levels of hypoxia-induced HPASMCs. Conclusions. Inhibition of FAS plays a crucial role in shielding mice from hypoxia-induced PAH, which was partially achieved through the activation of PI3K/AKT signaling, indicating that the inhibition of FAS may provide a potential future direction for reversing PAH in humans.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 459-459
Author(s):  
Miguel Rebollo-Hernanz ◽  
Lindsey Willis ◽  
Yolanda Aguilera ◽  
María A Martin-Cabrejas ◽  
Elvira Gonzalez de Mejia

Abstract Objectives To evaluate the effect of selected bioactive compounds from cocoa shell and its aqueous extract on the activation of fibroblast growth factor 21 (FGF21) signaling in hepatocytes and the resulting modulation of lipid and glucose metabolism, oxidative stress, and mitochondrial function. Methods The bioactive compounds from cocoa shells were extracted using water and characterized by UPLC-MS/MS. An in vitro model of non-alcoholic fatty liver disease was used: HepG2 cells were co-treated with either pure theobromine (TH), protocatechuic acid (PCA), procyanidin B2 (PB2), epicatechin (EPI), catechin (CAT) (10–50 µmol L−1), or the aqueous extract from cocoa shells (CAE, 20–100 µg mL−1) in the presence or absence of palmitic acid (PA, 500 µmol L−1). FGF21 receptor interaction with cocoa shell phytochemical was evaluated in silico. Biomarkers of cell metabolism were assessed 24 h after the co-treatment in cell supernatants and lysates using chemical, biochemical, and immunochemical techniques. Results Phytochemicals from cocoa shell were able to interact in silico with FGF21 receptor (biding energies from −6.0 to −11.0 kcal mol−1) denoting a potential interaction causing FGF21 receptor response. FGF21 hepatic signaling was activated (1.1 to 2.3-fold enhance in ERK1/2 phosphorylation). CAE, TH, PCA, PB2, EPI, and CAT diminished PA-elicited lipid accumulation (5–86%, P &lt; 0.05) by reducing fatty acid synthase expression, and stimulated lipolysis (1–87%, P &lt; 0.05) through the up-regulation of lipoprotein lipase expression. CAE and therein-bioactive compounds, mainly TH and PCA, promoted glucose uptake (4–35%, P &lt; 0.05) via the increase in the phosphorylation of the insulin receptor (2.2-fold, P &lt; 0.05), protein kinase B (2.8-fold, P &lt; 0.05), AMPKα (2.0-fold, P &lt; 0.05), and ERK1/2 (2.8-fold, P &lt; 0.05) phosphorylation. Oxidative stress was prevented (50–100%, P &lt; 0.05), and the loss of mitochondrial content (15–100%, P &lt; 0.05) and function, measured as ATP production, alleviated (28–100%, P &lt; 0.05). Conclusions Results demonstrated that the major bioactive compounds, primarily TH and PCA, found in cocoa shell could activate FGF21 signaling and regulated hepatic lipid and glucose metabolism, preventing insulin resistance, oxidative stress, and mitochondrial dysfunction. Funding Sources USDA-NIFA-HATCH, and the Spanish Ministry of Science and Innovation.


2021 ◽  
Vol 11 (8) ◽  
pp. 1106
Author(s):  
Silvia Claros ◽  
Antonio Gil ◽  
Mauro Martinelli ◽  
Nadia Valverde ◽  
Estrella Lara ◽  
...  

Stress seems to contribute to the neuropathology of Parkinson’s disease (PD), possibly by dysregulation of the hypothalamic–pituitary–adrenal axis. Oxidative distress and mitochondrial dysfunction are key factors involved in the pathophysiology of PD and neuronal glucocorticoid-induced toxicity. Animal PD models have been generated to study the effects of hormonal stress, but no in vitro model has yet been developed. Our aim was to examine the impact of corticosterone (CORT) administration on a dopaminergic neuronal cell model of PD induced by the neurotoxin MPP+, as a new combined PD model based on the marker of endocrine response to stress, CORT, and oxidative-mitochondrial damage. We determined the impact of CORT, MPP+ and their co-incubation on reactive oxygen species production (O2−•), oxidative stress cellular markers (advanced-oxidation protein products and total antioxidant status), mitochondrial function (mitochondrial membrane potential and mitochondrial oxygen consumption rate) and neurodegeneration (Fluoro-Jade staining). Accordingly, the administration of MPP+ or CORT individually led to cell damage compared to controls (p < 0.05), as determined by several methods, whereas their co-incubation produced strong cell damage (p < 0.05). The combined model described here could be appropriate for investigating neuropathological hallmarks and for evaluating potential new therapeutic tools for PD patients suffering mild to moderate emotional stress.


Author(s):  
Sicong Yu ◽  
Lepeng Gao ◽  
Yang Song ◽  
Xin Ma ◽  
Shuang Liang ◽  
...  

Abstract Mitochondria play an important role in controlling oocyte developmental competence. Our previous studies showed that glycine can regulate mitochondrial function and improve oocyte maturation in vitro. However, the mechanisms by which glycine affects mitochondrial function during oocyte maturation in vitro have not been fully investigated. In this study, we induced a mitochondrial damage model in oocytes with the Bcl-2-specific antagonist ABT-199. We investigated whether glycine could reverse the mitochondrial dysfunction induced by ABT-199 exposure and whether it is related to calcium regulation. Our results showed that ABT-199 inhibited cumulus expansion, decreased the oocyte maturation rate and the intracellular glutathione (GSH) level, caused mitochondrial dysfunction, induced oxidative stress, which was confirmed by decreased mitochondrial membrane potential (Δ⍦m) and the expression of mitochondrial function-related genes (PGC-1α), and increased reactive oxygen species (ROS) levels and the expression of apoptosis-associated genes (Bax, caspase-3, CytC). More importantly, ABT-199-treated oocytes showed an increase in the intracellular free calcium concentration ([Ca 2+]i) and had impaired cortical type 1 inositol 1,4,5-trisphosphate receptors (IP3R1) distribution. Nevertheless, treatment with glycine significantly ameliorated mitochondrial dysfunction, oxidative stress and apoptosis, glycine also regulated [Ca 2+]i levels and IP3R1 cellular distribution, which further protects oocyte maturation in ABT-199-induced porcine oocytes. Taken together, our results indicate that glycine has a protective action against ABT-199-induced mitochondrial dysfunction in porcine oocytes.


1996 ◽  
Vol 270 (2) ◽  
pp. E344-E352 ◽  
Author(s):  
A. T. Ozcelikay ◽  
D. J. Becker ◽  
L. N. Ongemba ◽  
A. M. Pottier ◽  
J. C. Henquin ◽  
...  

Molybdenum mimics certain insulin actions in vitro. We have investigated the effects of oral administration of Na2MoO4 (Mo) for 8 wk on carbohydrate and lipid metabolism in streptozotocin-diabetic rats. Mo decreased hyperglycemia and glucosuria by 75% and corrected the elevation of plasma nonesterified fatty acids. Tolerance to glucose loads was improved, and glycogen stores were replenished. These effects were not due to a rise of insulinemia. In liver, Mo restored the blunted mRNA and activity of glucokinase and pyruvate kinase and decreased to normal phosphoenolpyruvate carboxykinase values. Finally, Mo totally reversed the low expression and activity of acetyl-CoA carboxylase and fatty acid synthase in liver, but not in white adipose tissue. In conclusion, Mo exerts a marked blood glucose-lowering effect in diabetic rats by an insulin-like action. This effect results in part from a restoration of hepatic glucose metabolism and is associated with a tissue-specific correction of lipogenic enzyme gene expression, both processes being essentially mediated by reversal of impaired pretranslational regulatory mechanisms. These observations raise new therapeutic perspectives in diabetes, particularly in the insulin-resistant condition.


2019 ◽  
Vol 63 (10) ◽  
pp. 1970023
Author(s):  
Miguel Rebollo‐Hernanz ◽  
Qiaozhi Zhang ◽  
Yolanda Aguilera ◽  
Maria A. Martín‐Cabrejas ◽  
Elvira Gonzalez Mejia

Antioxidants ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 123 ◽  
Author(s):  
Lidija Milkovic ◽  
Tea Vukovic ◽  
Neven Zarkovic ◽  
Franz Tatzber ◽  
Egils Bisenieks ◽  
...  

Oxidative stress has been implicated in pathophysiology of different human stress- and age-associated disorders, including osteoporosis for which antioxidants could be considered as therapeutic remedies as was suggested recently. The 1,4-dihydropyridine (DHP) derivatives are known for their pleiotropic activity, with some also acting as antioxidants. To find compounds with potential antioxidative activity, a group of 27 structurally diverse DHPs, as well as one pyridine compound, were studied. A group of 11 DHPs with 10-fold higher antioxidative potential than of uric acid, were further tested in cell model of human osteoblast-like cells. Short-term combined effects of DHPs and 50 µM H2O2 (1-h each), revealed better antioxidative potential of DHPs if administered before a stressor. Indirect 24-h effect of DHPs was evaluated in cells further exposed to mild oxidative stress conditions induced either by H2O2 or tert-butyl hydroperoxide (both 50 µM). Cell growth (viability and proliferation), generation of ROS and intracellular glutathione concentration were evaluated. The promotion of cell growth was highly dependent on the concentrations of DHPs used, type of stressor applied and treatment set-up. Thiocarbatone III-1, E2-134-1 III-4, Carbatone II-1, AV-153 IV-1, and Diethone I could be considered as therapeutic agents for osteoporosis although further research is needed to elucidate their bioactivity mechanisms, in particular in respect to signaling pathways involving 4-hydroxynoneal and related second messengers of free radicals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruiwen Wang ◽  
Zhecheng Wang ◽  
Ruimin Sun ◽  
Rong Fu ◽  
Yu Sun ◽  
...  

Fatty acid β-oxidation is an essential pathogenic mechanism in nonalcoholic fatty liver disease (NAFLD), and TATA-box binding protein associated factor 9 (TAF9) has been reported to be involved in the regulation of fatty acid β-oxidation. However, the function of TAF9 in NAFLD, as well as the mechanism by which TAF9 is regulated, remains unclear. In this study, we aimed to investigate the signaling mechanism underlying the involvement of TAF9 in NAFLD and the protective effect of the natural phenolic compound Danshensu (DSS) against NAFLD via the HDAC1/TAF9 pathway. An in vivo model of high-fat diet (HFD)-induced NAFLD and a palmitic acid (PA)-treated AML-12 cell model were developed. Pharmacological treatment with DSS significantly increased fatty acid β-oxidation and reduced lipid droplet (LD) accumulation in NAFLD. TAF9 overexpression had the same effects on these processes both in vivo and in vitro. Interestingly, the protective effect of DSS was markedly blocked by TAF9 knockdown. Mechanistically, TAF9 was shown to be deacetylated by HDAC1, which regulates the capacity of TAF9 to mediate fatty acid β-oxidation and LD accumulation during NAFLD. In conclusion, TAF9 is a key regulator in the treatment of NAFLD that acts by increasing fatty acid β-oxidation and reducing LD accumulation, and DSS confers protection against NAFLD through the HDAC1/TAF9 pathway.


2019 ◽  
Vol 317 (2) ◽  
pp. R356-R368 ◽  
Author(s):  
Matthew T. Lewis ◽  
Jonathan D. Kasper ◽  
Jason N. Bazil ◽  
Jefferson C. Frisbee ◽  
Robert W. Wiseman

Type 2 diabetes (T2D) presents with hyperglycemia and insulin resistance, affecting over 30 million people in the United States alone. Previous work has hypothesized that mitochondria are dysfunctional in T2D and results in both reduced ATP production and glucose disposal. However, a direct link between mitochondrial function and T2D has not been determined. In the current study, the Goto-Kakizaki (GK) rat model of T2D was used to quantify mitochondrial function in vitro and in vivo over a broad range of contraction-induced metabolic workloads. During high-frequency sciatic nerve stimulation, hindlimb muscle contractions at 2- and 4-Hz intensities, the GK rat failed to maintain similar bioenergetic steady states to Wistar control (WC) rats measured by phosphorus magnetic resonance spectroscopy, despite similar force production. Differences were not due to changes in mitochondrial content in red (RG) or white gastrocnemius (WG) muscles (cytochrome c oxidase, RG: 22.2 ± 1.6 vs. 23.3 ± 1.7 U/g wet wt; WG: 10.8 ± 1.1 vs. 12.1 ± 0.9 U/g wet wt; GK vs. WC, respectively). Mitochondria isolated from muscles of GK and WC rats also showed no difference in mitochondrial ATP production capacity in vitro, measured by high-resolution respirometry. At lower intensities (0.25–1 Hz) there were no detectable differences between GK and WC rats in sustained energy balance. There were similar phosphocreatine concentrations during steady-state contraction and postcontractile recovery (τ = 72 ± 6 s GK versus 71 ± 2 s WC). Taken together, these results suggest that deficiencies in skeletal muscle energetics seen at higher intensities are not due to mitochondrial dysfunction in the GK rat.


Sign in / Sign up

Export Citation Format

Share Document