scholarly journals Therapeutic Strategies Targeting Mitochondrial Calcium Signaling: A New Hope for Neurological Diseases?

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Laura R. Rodríguez ◽  
Tamara Lapeña-Luzón ◽  
Noelia Benetó ◽  
Vicent Beltran-Beltran ◽  
Federico V. Pallardó ◽  
...  

Calcium (Ca2+) is a versatile secondary messenger involved in the regulation of a plethora of different signaling pathways for cell maintenance. Specifically, intracellular Ca2+ homeostasis is mainly regulated by the endoplasmic reticulum and the mitochondria, whose Ca2+ exchange is mediated by appositions, termed endoplasmic reticulum–mitochondria-associated membranes (MAMs), formed by proteins resident in both compartments. These tethers are essential to manage the mitochondrial Ca2+ influx that regulates the mitochondrial function of bioenergetics, mitochondrial dynamics, cell death, and oxidative stress. However, alterations of these pathways lead to the development of multiple human diseases, including neurological disorders, such as amyotrophic lateral sclerosis, Friedreich’s ataxia, and Charcot–Marie–Tooth. A common hallmark in these disorders is mitochondrial dysfunction, associated with abnormal mitochondrial Ca2+ handling that contributes to neurodegeneration. In this work, we highlight the importance of Ca2+ signaling in mitochondria and how the mechanism of communication in MAMs is pivotal for mitochondrial maintenance and cell homeostasis. Lately, we outstand potential targets located in MAMs by addressing different therapeutic strategies focused on restoring mitochondrial Ca2+ uptake as an emergent approach for neurological diseases.

Author(s):  
Mona Hussein ◽  
Rehab Magdy

AbstractMicroRNAs (miRNAs) are a class of short, non-coding, regulatory RNA molecules that function as post transcriptional regulators of gene expression. Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer’s disease, Parkinson’s disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington’s disease. miRNAs are implicated in the pathogenesis of excitotoxicity, apoptosis, oxidative stress, inflammation, neurogenesis, angiogenesis, and blood–brain barrier protection. Consequently, miRNAs can serve as biomarkers for different neurological disorders. In recent years, advances in the miRNA field led to identification of potentially novel prospects in the development of new therapies for incurable CNS disorders. MiRNA-based therapeutics include miRNA mimics and inhibitors that can decrease or increase the expression of target genes. Better understanding of the mechanisms by which miRNAs are implicated in the pathogenesis of neurological disorders may provide novel targets to researchers for innovative therapeutic strategies.


Author(s):  
Meric Ozturk ◽  
Marit Nilsen-Hamilton ◽  
Muslum Ilgu

Being the predominant cause of disability, neurological diseases have received much attention from the global health community. Over a billion people suffer from one of the following neurological disorders: dementia, epilepsy, stroke, migraine, meningitis, Alzheimer's disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease, prion dis-ease, or brain tumors. Diagnosis and treatment options are limited for many of these diseases. Aptamers, being small and non-immunogenic nucleic acid molecules that are easy to chemically modify, offer potential diagnostic and theranostic applications to meet these needs. This review covers pioneer studies to apply aptamers, which show promise for future diagnostics and treatments of neurological disorders that pose increasingly dire worldwide health challenges.


2021 ◽  
Vol 14 (12) ◽  
pp. 1260
Author(s):  
Meric Ozturk ◽  
Marit Nilsen-Hamilton ◽  
Muslum Ilgu

Being the predominant cause of disability, neurological diseases have received much attention from the global health community. Over a billion people suffer from one of the following neurological disorders: dementia, epilepsy, stroke, migraine, meningitis, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease, prion disease, or brain tumors. The diagnosis and treatment options are limited for many of these diseases. Aptamers, being small and non-immunogenic nucleic acid molecules that are easy to chemically modify, offer potential diagnostic and theragnostic applications to meet these needs. This review covers pioneering studies in applying aptamers, which shows promise for future diagnostics and treatments of neurological disorders that pose increasingly dire worldwide health challenges.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lingna Xu ◽  
Xi Wang ◽  
Jia Zhou ◽  
Yunyi Qiu ◽  
Weina Shang ◽  
...  

Endoplasmic reticulum (ER)–mitochondria contact sites (ERMCSs) are crucial for multiple cellular processes such as calcium signaling, lipid transport, and mitochondrial dynamics. However, the molecular organization, functions, regulation of ERMCS, and the physiological roles of altered ERMCSs are not fully understood in higher eukaryotes. We found that Miga, a mitochondrion located protein, markedly increases ERMCSs and causes severe neurodegeneration upon overexpression in fly eyes. Miga interacts with an ER protein Vap33 through its FFAT-like motif and an amyotrophic lateral sclerosis (ALS) disease related Vap33 mutation considerably reduces its interaction with Miga. Multiple serine residues inside and near the Miga FFAT motif were phosphorylated, which is required for its interaction with Vap33 and Miga-mediated ERMCS formation. The interaction between Vap33 and Miga promoted further phosphorylation of upstream serine/threonine clusters, which fine-tuned Miga activity. Protein kinases CKI and CaMKII contribute to Miga hyperphosphorylation. MIGA2, encoded by the miga mammalian ortholog, has conserved functions in mammalian cells. We propose a model that shows Miga interacts with Vap33 to mediate ERMCSs and excessive ERMCSs lead to neurodegeneration.


2018 ◽  
Vol 76 (7) ◽  
pp. 430-435 ◽  
Author(s):  
Alejandro Nasimbera ◽  
Julieta Rosales ◽  
Berenice Silva ◽  
Ricardo Alonso ◽  
Natalia Bohorquez ◽  
...  

ABSTRACT Chronic neurological disorders generate disabilities affecting multiple aspects of life, including sexuality. Objective To describe the presence of sexual dysfunction and comorbidities in a population with chronic neurological disorders. To analyze the relationship between disability and sexual dysfunction. Methods A cross-sectional case-control study was carried out. Patients with amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Parkinson’s disease (PD), and stroke of at least one year since the onset of symptoms were included, and compared with controls with no neurological disease, matched by age and sex. Results We included 71 participants: 29 controls, with a mean age of 49.4 years, and 42 patients with a mean age of 53.8 years. Sexual dysfunction was present in 22.5% of the controls and 77.5% of the patients. A statistically significant relationship between sexual dysfunction and disability was found in the logistic regression analysis (OR = 20.38, 95%CI: 2.5 –165.86). Conclusions Disability proved to be the main variable related to the presence of sexual dysfunction. Patients with ALS had the worst rates of sexual dysfunction. Patients with MS were similar to the control group. As for the PD group, no patient had normal sexuality. Finally, in stroke patients, the presence of comorbidities and their treatment may have negatively influenced sexuality. These findings showed that patients with chronic neurological diseases have sexual dysfunction and underscore the need for neurologists to know and address this problem.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ping Liu ◽  
Yuan Yuan ◽  
Ning Zhang ◽  
Xiaoyan Liu ◽  
Lihua Yu ◽  
...  

Mirror movements (MMs) are specifically defined as involuntary movements occurring on one side of homologous muscles when performing unilateral movements with the contralateral limb. MMs have been considered a kind of soft neurological signs, and the persistence or reappearance of MMs in adults is usually pathologic. In addition to some congenital syndrome, MMs have been also described in age-related neurological diseases including pyramidal system diseases (e.g., stroke, amyotrophic lateral sclerosis) and extrapyramidal disorders (e.g., Parkinson's disease, essential tremor). With the advances in instrumentation and detection means, subtle or subclinical MMs have been deeply studied. Furthermore, the underlying mechanism is also being further elucidated. In this mini-review, we firstly discuss the MM examination means, and then review the literature regarding MMs in individuals with acquired neurological disorders, in order to further understand the pathogenesis of MMs.


2020 ◽  
Vol 26 (21) ◽  
pp. 2475-2491 ◽  
Author(s):  
Maria Morello ◽  
Massimo Pieri ◽  
Rossella Zenobi ◽  
Alessandra Talamo ◽  
Delphine Stephan ◽  
...  

Vitamin D is a steroid hormone implicated in the regulation of neuronal integrity and many brain functions. Its influence, as a nutrient and a hormone, on the physiopathology of the most common neurodegenerative diseases is continuously emphasized by new studies. This review addresses what is currently known about the action of vitamin D on the nervous system and neurodegenerative diseases such as Multiple Sclerosis, Alzheimer’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis. Further vitamin D research is necessary to understand how the action of this “neuroactive” steroid can help to optimize the prevention and treatment of several neurological diseases.


Author(s):  
Ianara Mendonça da Costa ◽  
Elaine Cristina Gurgel Andrade Pedrosa ◽  
Ana Paula de Carvalho Bezerra ◽  
Luciana Cristina Borges Fernandes ◽  
José Rodolfo Lopes de Paiva Cavalcanti ◽  
...  

Current therapies for neurodegenerative diseases offer only limited benefits to their clinical symptoms and do not prevent the degeneration of neuronal cells. Neurological diseases affect millions of people around the world, and the economic impact of treatment is high, given that health care resources are scarce. Thus, many therapeutic strategies to delay or prevent neurodegeneration have been the subject of research for treatment. One strategy for this is the use of herbal and essential oils of different species of medicinal plants because they have several bioactive compounds and phytochemicals with neuroprotective capacity. In addition, they respond positively to neurological disorders, such as dementia, oxidative stress, anxiety, cerebral ischemia, and oxidative toxicity, suggesting their use as complementary treatment agents in the treatment of neurological disorders.


2018 ◽  
Vol 399 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Mohammad Yusuf ◽  
Maria Khan ◽  
Majed A. Robaian ◽  
Riaz A. Khan

AbstractNeurological diseases like Alzheimer’s disease, epilepsy, parkinsonism, depression, Huntington’s disease and amyotrophic lateral sclerosis prevailing globally are considered to be deeply influenced by oxidative stress-based changes in the biochemical settings of the organs. The excess oxygen concentration triggers the production of reactive oxygen species, and even the intrinsic antioxidant enzyme system, i.e. SOD, CAT and GSHPx, fails to manage their levels and keep them under desirable limits. This consequently leads to oxidation of protein, lipids and nucleic acids in the brain resulting in apoptosis, proteopathy, proteasomes and mitochondrion dysfunction, glial cell activation as well as neuroinflammation. The present exploration deals with the evidence-based mechanism of oxidative stress towards development of key neurological diseases along with the involved biomechanistics and biomaterials.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Antonio Paoli ◽  
Antonino Bianco ◽  
Ernesto Damiani ◽  
Gerardo Bosco

An increasing number of data demonstrate the utility of ketogenic diets in a variety of metabolic diseases as obesity, metabolic syndrome, and diabetes. In regard to neurological disorders, ketogenic diet is recognized as an effective treatment for pharmacoresistant epilepsy but emerging data suggests that ketogenic diet could be also useful in amyotrophic lateral sclerosis, Alzheimer, Parkinson’s disease, and some mitochondriopathies. Although these diseases have different pathogenesis and features, there are some common mechanisms that could explain the effects of ketogenic diets. These mechanisms are to provide an efficient source of energy for the treatment of certain types of neurodegenerative diseases characterized by focal brain hypometabolism; to decrease the oxidative damage associated with various kinds of metabolic stress; to increase the mitochondrial biogenesis pathways; and to take advantage of the capacity of ketones to bypass the defect in complex I activity implicated in some neurological diseases. These mechanisms will be discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document