scholarly journals Superhydrophobic Self-Assembled Silane Monolayers on Hierarchical 6082 Aluminum Alloy for Anti-Corrosion Applications

2020 ◽  
Vol 10 (8) ◽  
pp. 2656 ◽  
Author(s):  
Amani Khaskhoussi ◽  
Luigi Calabrese ◽  
Edoardo Proverbio

In this work, a two-stage methodology to design super-hydrophobic surfaces was proposed. The first step consists of creating a rough nano/micro-structure and the second step consists of reducing the surface energy using octadecyltrimethoxysilane. The surface roughening was realized by three different short-term pretreatments: (i) Boiling water, (ii) HNO3/HCl etching, or (iii) HF/HCl etching. Then, the surface energy was reduced by dip-coating in diluted solution of octadecyltrimethoxysilane to allow the formation of self-assembled silane monolayers on a 6082-T6 aluminum alloy surface. Super-hydrophobic aluminum surfaces were investigated by SEM-EDS, FTIR, profilometry, and contact and sliding angles measurements. The resulting surface morphologies by the three approaches were structured by a dual hierarchical nano/micro-roughness. The surface wettability varied with the applied roughening pretreatment. In particular, an extremely high water contact angle (around 180°) and low sliding angle (0°) were evidenced for the HF/HCl-etched silanized surface. The results of electrochemical tests demonstrate a remarkable enhancement of the aluminum alloy corrosion resistance through the proposed superhydrophobic surface modifications. Thus, the obtained results evidenced that the anti-wetting behavior of the aluminum surface can be optimized by coupling an appropriate roughening pretreatment with a self-assembled silane monolayer deposition (to reduce surface energy) for anticorrosion application.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
María V. Puc-Oxté ◽  
Máximo A. Pech-Canul

Purpose This paper aims to prepare highly hydrophobic films on aluminum AA3003 using myristic acid (MA) and evaluate its corrosion protection efficiency in a low-chloride solution. Design/methodology/approach The aluminum surface was initially treated with boiling water to develop a porous nanostructure, and then surface modification was carried out in ethanolic solutions with different concentrations of MA. The surface morphology, wetting behavior and film composition were first characterized, and then, the corrosion behavior was evaluated with electrochemical techniques. Findings The best hydrophobicity and corrosion resistance were obtained with 50 mM of MA. For such concentration, a water contact angle of 140° and protective efficiency of 96% were achieved. A multilayer structure was revealed by scanning electron microscope and X-ray photoelectron spectroscopy. Originality/value The results of this work shed light on the anticorrosion performance of fatty acid self-assembled multilayers on the surface of Al–Mn alloys.


2011 ◽  
Vol 239-242 ◽  
pp. 2270-2273 ◽  
Author(s):  
Yong Feng Luo ◽  
Hai Yan Lang ◽  
Jin Liang ◽  
Guo Sheng Peng ◽  
You Hua Fan ◽  
...  

A facial chemical etching method was developed for fabricating stable super-hydrophobic surfaces on aluminum alloy foils. The microstructure and wettability of super-hydrophobic surfaces were characterized by scanning electron microscopy, water contact angle (CA) measurement, and optical methods. The surfaces of the modified aluminum alloy substrates exhibit superhydrophobicity, with a CA of 164.8°±1.6° and a water sliding angle of about 5°. The etched surfaces have binary structure consisting of the irregular microscale plateaus and caves in which there are the nanoscale block-like convexes and hollows.


2012 ◽  
Vol 9 (1) ◽  
pp. 435-442 ◽  
Author(s):  
Yabin Wang ◽  
Yanni Li ◽  
Fang Wang

The protective performances of coating formed by organo-silane with a linear alkyl chain for promoting aluminum alloy corrosion protection were evaluated by electrochemical techniques. The coatings were self-assembled in the hydrolyzed hydroalcoholic bath ofn-octyltriethoxysilane (OS) and cured at hot air oven by different time. The coatings prepared by the less self-assembled number and shorter cured time, were always porous and scarcely protective. On the contrary, those built by the more self-assembled number and the longer cured time had higher coverage on aluminum surface and favorable corrosion resistant property. The best results were obtained whenn-octyltri-ethoxysilane (OS) was hydrolyzed 25 h, self-assembling of OS was conducted for five times and the multi-layers were cured at 120 for 1∼2 hours. In this case, the thicker, high cross-linked and more scarcely defective layer was formed on aluminum alloy surface.


2021 ◽  
Vol 11 (12) ◽  
pp. 2004-2009
Author(s):  
Ruomei Wu ◽  
Shuai Wu ◽  
Haiyun Jiang ◽  
Zigong Chang ◽  
Zhiqing Yuan ◽  
...  

Anti-corrosion of aluminum alloys with different roughness were researched in this study. To further verify the relationship between anti-corrosion and surface roughness, surface with micro structure alloy was successfully fabricated via anode oxidation on aluminum. The water contact angle of aluminum alloy surface after coating polypropylene film was 154° and sliding angle was 3°. The micro-nano structure was constructed by adding nano-SiO2. The contacts angle of surface was 165° and the sliding angle was 1.8°. The superhydrophobic samples were used to test corrosion resistance. Compared with aluminum coated with unmodified film, the corrosion potential for modified superhydrophobic aluminum alloy increased by about 0.05 V. When nano-SiO2 particles were added, the corrosion resistance for the sample was also improved.


2018 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
A. Syafiq ◽  
A.K. Pandey ◽  
Vengadaesvaran Balakrishnan ◽  
Nasrudin Abd Rahim

PurposeThe paper aims to investigate the effect of Degussa P-25 Titanium Dioxide (TiO2) nanoparticles on hydrophobicity and self-cleaning ability as a single organic coating on glass substrate.Design/methodology/approachTwo methods have been used to enhance the hydrophobicity on glass substrates, namely, surface modification by using low surface energy isooctyltrimethoxysilane (ITMS) solution and construction of rough surface morphology using Degussa P-25 TiO2nanoparticles with simple bottom-up approach. The prepared sol was applied onto glass substrate using dip-coating technique and stoved in the vacuum furnace 350°C.FindingsThe ITMS coating with nano TiO2pigment has modified the glass substrate surface by achieving the water contact angle as high as 169° ± 2° and low sliding angle of 0° with simple and low-cost operation. The solid and air phase interface has created excellent anti-dirt and self-cleaning properties against dilute ketchup solution, mud and silicon powder.Research limitations/implicationsFindings will be useful in the development of self-cleaning and anti-dirt coating for photovoltaic panels.Practical implicationsSol method provides the suitable medium for the combination of organic–inorganic network to achieve high superhydrophobicity and optimum self-cleaning ability.Originality/valueApplication of blended organic–inorganic sol as self-cleaning and anti-dirt coating film.


2013 ◽  
Vol 312 ◽  
pp. 350-353
Author(s):  
Ruo Mei Wu ◽  
Guang Hua Chao ◽  
Hai Yun Jiang

The preparation method of the superhydrophobic surface on aluminum alloys was investigated, the method is novel by phosphoric acid-dichromate process and stearic acid coating, superhydrophobic aluminum alloy surfaces were successful prepared, the maximum static water contact angle and sliding angle on the superhydrophobic surface was 151±1.8° and 10°, respectively. In this work, the microstructure and self-cleaning properties of the superhydrophobic surface were studied. The superhydrophobic surface is a factor to reduce device-associated contamination and can be used in metal packaging practice.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1162
Author(s):  
Rajaram S. Sutar ◽  
Saravanan Nagappan ◽  
Appasaheb K. Bhosale ◽  
Kishor Kumar Sadasivuni ◽  
Kang-Hyun Park ◽  
...  

Superhydrophobic coatings have a huge impact in various applications due to their extreme water-repellent properties. The main novelty of the current research work lies in the development of cheap, stable, superhydrophobic and self-cleaning coatings with extreme water-repellency. In this work, a composite of hydrothermally synthesized alumina (Al2O3), polymethylhydrosiloxane (PMHS) and polystyrene (PS) was deposited on a glass surface by a dip-coating technique. The Al2O3 nanoparticles form a rough structure, and low-surface-energy PHMS enhances the water-repellent properties. The composite coating revealed a water contact angle (WCA) of 171 ± 2° and a sliding angle (SA) of 3°. In the chemical analysis, Al2p, Si2p, O1s, and C1s elements were detected in the XPS survey. The prepared coating showed a self-cleaning property through the rolling action of water drops. Such a type of coating could have various industrial applications in the future.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 788
Author(s):  
Shunli Zheng ◽  
Cheng Li ◽  
Yupeng Zhang ◽  
Tengfei Xiang ◽  
Ying Cao ◽  
...  

Corrosion and contamination of metallic structures can cause loss of their functionality as well as aesthetic values. In this study, we describe a general strategy to prepare superhydrophobic self-cleaning and anti-corrosion surfaces for metallic structures. As a specific example, a superhydrophobic coating (SHC) on aluminum alloy was prepared by a simple etching combined with the decoration of a low-surface-energy material. The optimal SHC has a water contact angle (CA) at ~157.4° and a sliding angle (SA) of ~8.3° due to the synergy of binary hierarchical structures and chemical modification. The SHC showed low adhesion to dry contaminants and a series of liquids, displaying a good self-cleaning effect. The SHC maintained superhydrophobicity after exposure to air and humid condition at 60 °C for 7 days. In addition, the electrochemical measurements reveal that the anti-corrosion performance was enhanced by reducing the corrosion current density (Jcorr) by 1 order of magnitude and increasing the corrosion potential (Ecorr) by 0.527 V as compared to the bare Al alloy substrate after immersion for 168 h.


Sign in / Sign up

Export Citation Format

Share Document