scholarly journals Robust Adaptive Control for Nonlinear Aircraft System with Uncertainties

2020 ◽  
Vol 10 (12) ◽  
pp. 4270
Author(s):  
Jiao Chen ◽  
Jiangyun Wang ◽  
Weihong Wang

Model reference adaptive control (MRAC) schemes are known as an effective method to deal with system uncertainties. High adaptive gains are usually needed in order to achieve fast adaptation. However, this leads to high-frequency oscillation in the control signal and may even make the system unstable. A robust adaptive control architecture was designed in this paper for nonlinear aircraft dynamics facing the challenges of input uncertainty, matched uncertainty, and unmatched uncertainty. By introducing a robust compensator to the MRAC framework, the high-frequency components in the control response were eliminated. The proposed control method was applied to the longitudinal-direction motion control of a nonlinear aircraft system. Flight simulation results demonstrated that the proposed robust adaptive method was able to achieve fast adaptation without high-frequency oscillations, and guaranteed transient performance.

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Gaosheng Luo ◽  
Jiawang Chen ◽  
Linyi Gu

A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1) the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2) the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.


Sign in / Sign up

Export Citation Format

Share Document