scholarly journals Content Management Based on Content Popularity Ranking in Information-Centric Networks

2021 ◽  
Vol 11 (13) ◽  
pp. 6088
Author(s):  
Nazib Abdun Nasir ◽  
Seong-Ho Jeong

Users can access the Internet anywhere they go at any time due to the advancement of communications and networking technologies. The number of users and connected devices are rapidly increasing, and various forms of content are becoming increasingly available on the Internet. Consequently, several research ideas have emerged regarding the storage policy for the enormous amount of content, and procedures to remove existing content due to the lack of storage space have also been discussed. Many of the proposals related to content caching offer to identify the popularity of certain content and hold the popular content in a repository as long as possible. Although the host-based Internet has been serving its users for a long time, managing network resources efficiently during high traffic load is problematic for the host-based Internet because locating the host with their IP address is one of the primary mechanisms behind this architecture. A more strategical networking paradigm to resolve this issue is Content-Centric Networking (CCN), a branch of the networking paradigm Information-Centric Networking (ICN) that is focused on the name of the content, and therefore can deliver the requested content efficiently, securely, and faster. However, this paradigm has relatively simple content caching and content removal mechanisms, as it caches all the relevant content at all the nodes and removes the content based on the access time only when there is a lack of space. In this paper, we propose content popularity ranking (CPR) mechanism, content caching scheme, and content removal scheme. The proposed schemes are compared to existing caching schemes such as Leave Copy Everywhere (LCE) and Leave Copy Down (LCD) in terms of the Average Hop Count, content removal schemes such as Least Recently Used (LRU) and Least Frequently Used (LFU) in terms of the Cache Hit Ratio, and finally, the CCN paradigm incorporating the LCE and the LRU schemes and the host-based Internet architecture in terms of Content Delivery Time. Graphical presentations of performance results utilizing the proposed schemes show that the proposed CPR-based schemes for content caching and content removal provide better performance than the host-based Internet and the original CCN utilizing LCE and LRU schemes.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7204
Author(s):  
Sumit Kumar ◽  
Rajeev Tiwari ◽  
Wei-Chiang Hong

Content-Centric Networking (CCN) has emerged as a potential Internet architecture that supports name-based content retrieval mechanism in contrast to the current host location-oriented IP architecture. The in-network caching capability of CCN ensures higher content availability, lesser network delay, and leads to server load reduction. It was observed that caching the contents on each intermediate node does not use the network resources efficiently. Hence, efficient content caching decisions are crucial to improve the Quality-of-Service (QoS) for the end-user devices and improved network performance. Towards this, a novel content caching scheme is proposed in this paper. The proposed scheme first clusters the network nodes based on the hop count and bandwidth parameters to reduce content redundancy and caching operations. Then, the scheme takes content placement decisions using the cluster information, content popularity, and the hop count parameters, where the caching probability improves as the content traversed toward the requester. Hence, using the proposed heuristics, the popular contents are placed near the edges of the network to achieve a high cache hit ratio. Once the cache becomes full, the scheme implements Least-Frequently-Used (LFU) replacement scheme to substitute the least accessed content in the network routers. Extensive simulations are conducted and the performance of the proposed scheme is investigated under different network parameters that demonstrate the superiority of the proposed strategy w.r.t the peer competing strategies.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Faiza Qazi ◽  
Osman Khalid ◽  
Rao Naveed Bin Rais ◽  
Imran Ali Khan ◽  
Atta ur Rehman Khan

Content-Centric Networking (CCN) is a novel architecture that is shifting host-centric communication to a content-centric infrastructure. In recent years, in-network caching in CCNs has received significant attention from research community. To improve the cache hit ratio, most of the existing schemes store the content at maximum number of routers along the downloading path of content from source. While this helps in increased cache hits and reduction in delay and server load, the unnecessary caching significantly increases the network cost, bandwidth utilization, and storage consumption. To address the limitations in existing schemes, we propose an optimization based in-network caching policy, named as opt-Cache, which makes more efficient use of available cache resources, in order to reduce overall network utilization with reduced latency. Unlike existing schemes that mostly focus on a single factor to improve the cache performance, we intend to optimize the caching process by simultaneously considering various factors, e.g., content popularity, bandwidth, and latency, under a given set of constraints, e.g., available cache space, content availability, and careful eviction of existing contents in the cache. Our scheme determines optimized set of content to be cached at each node towards the edge based on content popularity and content distance from the content source. The contents that have less frequent requests have their popularity decreased with time. The optimal placement of contents across the CCN routers allows the overall reduction in bandwidth and latency. The proposed scheme is compared with the existing schemes and depicts better performance in terms of bandwidth consumption and latency while using less network resources.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
DaeYoub Kim

To solve various problems of the Internet, content centric networking (CCN), one of information centric networking architectures (ICN), provides both an in-network content caching scheme and a built-in content verification scheme. However, a user is still asked to generate many request messages when retrieving fragmented content through CCN. This model can seriously increase the amount of network traffic. Furthermore, when receiving content, a user is asked to verify the received content before using it. This verification process can cause a serious service delay. To improve such inefficiencies, this paper proposes a transmission process to handle request messages at one time. Also, it suggests an efficient content verification method using both hash chains and Merkel-hash tree.


Author(s):  
T. A. Maksymyuk ◽  
◽  
B. P. Shubyn ◽  
V. S. Andrushchak ◽  
S. S. Dumych ◽  
...  

With the advent of 5G, the market has been expecting the immersive user experience with rich multimedia content. Meeting such requirements within the physical constraints of limited spectrum and infrastructure availability is a challenging task, which prevents operators to scale their services properly. Currently, mobile operators are forced to invest large amount of money in their infrastructure, in order to maximize the capacity by network densification and higher frequency reuse factors. The dark side of such trend is that infrastructure becomes more expensive, spectrum price is getting higher and total cost of ownership for operator increases drastically. Nowadays, with the rise of artificial intelligence, cloud and edge computing the network becomes more flexible that opens many opportunities to enhance the performance and user experience. In this paper, we propose a new approach for content management in mobile network by using predictive caching of rich multimedia content in edge servers. Proposed approach is based on the content popularity prediction by using recurrent neural networks, that allows to deliver corresponding content in the close proximity to the target end users by the time it will be needed. Simulation results show that the proposed model is more than 90% accurate for both daily and weekly timeframes. Furthermore, we develop a method of personalized content caching in user devices based on their subscriptions and preferences, to make sure that user will have the best experience. Proposed approach for content management allows to improve the overall network performance by proactive content caching during the time of low network load. Moreover, the proactive caching allows to download the content in the best quality, regardless of the network congestions and bottlenecks.


2015 ◽  
Vol 14 (12) ◽  
pp. 6334-6342
Author(s):  
GARGI BHARDWAJ ◽  
UDAI SHANKAR

Integrating MANETs (Mobile Ad-hoc Networks) nodes to the Internet require either a connection to the Internet or they can connect to the Internet through the Internet gateways. For the second case if a node in a MANET has discover the gateway to connect to the fixed hosts in the Internet and it can be done either by broadcasting a gateway discovery request message initiated by nodes itself or by broadcasting periodic gateway advertisement messages from the gateways. End to end packet delay and throughput are strongly dependent on the time needed to discover the gateways.Nodes in a MANET use number of hops as metric to select a path to a gateway, if all the nodes select its nearest gateway to access the Internet then there may be situations when the network performance degrades because some nodes along the path have too many packets waiting in the queue.This paper presents a novel solution to access internet through mobile nodes in ad hoc network. Here the gateway replies with an advertisement message which is broadcasted to the whole network instead of sending a unicast reply to the requesting node. The traffic load taken into account along a path in addition with minimum hop count to select an efficient gateway. The AODV routing protocol has been used for routing in the MANET domain.A new strategy of gateway discovery was investigated and impact of new metric on the gateway selection in NS-2 was observed. Simulation results show that the proposed scheme outperforms over the existing scheme with high throughput and lower end to end delay.


2020 ◽  
Vol 14 ◽  
Author(s):  
S. Mahima ◽  
N. Rajendran

: Mobile ad hoc networks (MANET) hold a set of numerous mobile computing devices useful for communication with one another with no centralized control. Due to the inherent features of MANET such as dynamic topology, constrained on bandwidth, energy and computing resources, there is a need to design the routing protocols efficiently. Flooding is a directive for managing traffic since it makes use of only chosen nodes for transmitting data from one node to another. This paper intends to develop a new Cluster-Based Flooding using Fuzzy Logic Scheme (CBF2S). To construct clusters and choose proper cluster heads (CHs), thefuzzy logic approach is applied with the use of three parameters namely link quality, node mobility and node degree. The presented model considerably minimizes the number of retransmissions in the network. The presented model instructs the cluster members (CM) floods the packets inside a cluster called intra-cluster flooding and CHs floods the packets among the clusters called inter-cluster flooding. In addition, the gateway sends a packet to another gateway for minimizing unwanted data retransmissions when it comes under different CH. The presented CBF2S is simulated using NS2 tool under the presence of varying hop count. The CBF2S model exhibits maximum results over the other methods interms of overhead, communication overhead, traffic load, packet delivery ratio and the end to end delay.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1942
Author(s):  
Rogaia Mhemed ◽  
Frank Comeau ◽  
William Phillips ◽  
Nauman Aslam

Much attention has been focused lately on the Opportunistic Routing technique (OR) that can overcome the restrictions of the harsh underwater environment and the unique structures of the Underwater Sensor Networks (UWSNs). OR enhances the performance of the UWSNs in both packet delivery ratio and energy saving. In our work; we propose a new routing protocol; called Energy Efficient Depth-based Opportunistic Routing with Void Avoidance for UWSNs (EEDOR-VA), to address the void area problem. EEDOR-VA is a reactive OR protocol that uses a hop count discovery procedure to update the hop count of the intermediate nodes between the source and the destination to form forwarding sets. EEDOR-VA forwarding sets can be selected with less or greater depth than the packet holder (i.e., source or intermediate node). It efficiently prevents all void/trapped nodes from being part of the forwarding sets and data transmission procedure; thereby saving network resources and delivering data packets at the lowest possible cost. The results of our extensive simulation study indicate that the EEDOR-VA protocol outperforms other protocols in terms of packet delivery ratio and energy consumption


2020 ◽  
Vol 26 (11) ◽  
pp. 1366-1381
Author(s):  
Sathishkumar Natesan ◽  
Rajakumar Krishnan

The Routing Protocol for Low Power and Lossy Networks (RPL) is operated by gadgets comprised of many devices of embedded type with limited energy, memory as well as resources that do their process. The improvements in the life of the network and energy conservation are the key challenging features in Low Power and Lossy Networks (LLN). Obviously, the LLN has a key strategic part in routing. The Internet of Things (IoT) device is expected to make the apt choice. In LLN, the poor routing choice leads to traffic congestion, reduction in power as well as packet loss ratio. The task in the proposal analyzes Delay (D), Load (L) and Battery Discharge Index (BDI) pivoted Energy Efficient Composite Metric Routing (EECMR) protocol for LLN. The performance of the work in the proposal is evaluated by the COOJA simulator. It outperforms with respect to Network Lifetime (NL), Delay as well as Packet Delivery Ratio (PDR) contrasted to the routing metrics like Traffic Load (TL), Link Quality (LQ), Residual Energy (RE), RE-Battery Discharge Index (RE-BDI) and Hop Count (HC).


Author(s):  
Tariq Emad Ali ◽  
Ameer Hussein Morad ◽  
Mohammed A. Abdala

<span>In the last two decades, networks had been changed according to the rapid changing in its requirements.  The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations.  The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs.  Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and forwarding planes. So, due to the rapid increase in the number of applications, websites, storage space, and some of the network resources are being underutilized due to static routing mechanisms. To overcome these limitations, a Software Defined Network based Openflow Data Center network architecture is used to obtain better performance parameters and implementing traffic load balancing function. The load balancing distributes the traffic requests over the connected servers, to diminish network congestions, and reduce underutilization problem of servers. As a result, SDN is developed to afford more effective configuration, enhanced performance, and more flexibility to deal with huge network designs</span>


Author(s):  
Alexandra Bousia ◽  
Elli Kartsakli ◽  
Angelos Antonopoulos ◽  
Luis Alonso ◽  
Christos Verikoukis

Reducing the energy consumption in wireless networks has become a significant challenge, not only because of its great impact on the global energy crisis, but also because it represents a noteworthy cost for telecommunication operators. The Base Stations (BSs), constituting the main component of wireless infrastructure and the major contributor to the energy consumption of mobile cellular networks, are usually designed and planned to serve their customers during peak times. Therefore, they are more than sufficient when the traffic load is low. In this chapter, the authors propose a number of BSs switching off algorithms as an energy efficient solution to the problem of redundancy of network resources. They demonstrate via analysis and by means of simulations that one can achieve reduction in energy consumption when one switches off the unnecessary BSs. In particular, the authors evaluate the energy that can be saved by progressively turning off BSs during the periods when traffic decreases depending on the traffic load variations and the distance between the BS and their associated User Equipments (UEs). In addition, the authors show how to optimize the energy savings of the network by calculating the most energy-efficient combination of switched off and active BSs.


Sign in / Sign up

Export Citation Format

Share Document