scholarly journals Seismic and Energy Performance Evaluation of Large-Scale Curtain Walls Subjected to Displacement Control Fasteners

2021 ◽  
Vol 11 (15) ◽  
pp. 6725
Author(s):  
Heonseok Lee ◽  
Myunghwan Oh ◽  
Junwon Seo ◽  
Woosuk Kim

Glass façade curtain walls in buildings is the façade system of choice in modern architecture of mid- to high-rise buildings. This study investigates the seismic and thermal insulation performance of curtain wall systems through structural analysis using the finite element method (FEM) and LBNL Window&Therm insulation analysis. The aim was to optimize the capability of the curtain wall module system and the fastener element technology to respond to displacement and vibration caused by dynamic seismic waves. Using the structural analysis of the optimization process, a curtain wall system capable of withstanding earthquake waves of 0.4 Hz, displacement of ±150 mm or more, and capable of responding to three-axis (X, Y, and Z-axis) dynamic earthquakes, was fabricated. Then, a curtain wall system that satisfies not only the evaluation of seismic performance, but also the desired airtightness, watertightness, wind pressure, and insulation, which are essential requirements for field applications, was verified through an experiment. Based on this study, it is expected that a curtain wall system capable of responding to three-axis dynamic seismic waves can be applied to mid- and high-rise buildings to prevent secondary damage in the event of an earthquake.

2014 ◽  
Vol 32 (4) ◽  
pp. 299-314 ◽  
Author(s):  
Abdul-Mohsen Al-Hammad ◽  
Mohammad A. Hassanain ◽  
Mohammed N. Juaim

Purpose – The purpose of this paper is to present a systematic approach for the evaluation and selection of curtain wall systems for medium-high rise building construction. Design/methodology/approach – The authors have identified the different types of curtain wall systems that are commonly used in the building construction industry in Saudi Arabia; examined the various performance as well as financial and non-financial criteria affecting the evaluation and selection of these systems; and subjected the identified different types of curtain wall systems to several filtering processes, namely feasibility ranking, evaluation by comparison and weighted evaluation to facilitate making a decision on the most suitable system to select. Findings – The analysis of the collected data indicated that the precast concrete curtain wall system is considered to be the first choice. The second choice is the prefabricated brick panel curtain wall system. Originality/value – Curtain walls are the most recognized elements of contemporary structures today. There exists ample variety of materials and designs that could be utilized for the development of these building elements. This paper is of practical value to project owners, architects and design professionals endeavoring on the process of selecting and specifying curtain wall systems in their projects.


2020 ◽  
Vol 12 (11) ◽  
pp. 4726 ◽  
Author(s):  
Qiong He ◽  
S. Thomas Ng ◽  
Md. Uzzal Hossain ◽  
Godfried L. Augenbroe

This study presents a data-driven retrofitting approach by systematically analyzing the energy performance of existing high-rise residential buildings using a normative calculation logic-based simulation method. To demonstrate the practicality of the approach, typical existing buildings in five climate zones of China are analyzed based on the local building characteristics and climatic conditions. The results show that the total energy consumption is 544 kWh/m2/year in the severe cold zone, which is slightly higher than that in the cold zone (519 kWh/m2/year), but double that in the hot summer and cold winter zone, three times higher than that in the warm zone, and five times above that in the temperate zone. The dominant energy needs in different climatic zones are distinctive. The identified potentially suitable retrofitting measures are important in reducing large-scale energy consumption and can be used in supporting sustainable retrofit decisions for existing high-rise residential buildings in different climatic zones.


2014 ◽  
Vol 8 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Joseph A. Standley ◽  
Ali M. Memari

A new type of transparent panelized wall system for residential construction has recently been developed that can be used as an alternative to typical wood-frame and other light-frame wall systems. The new wall system is a prefabricated wall panel consisting of a structural steel back-up frame, transparent polycarbonate sheathing, and a curtain-wall system that may contain an integrated photovoltaic glazing panel. In this paper, after an introduction to the structural and architectural aspects of system, the thermal and energy performance aspects of this wall system are evaluated based on several criteria. The current configuration of the wall system shows an overall U-factor of 1.585 W/m2k. The material and systems analysis using a combination of life-cycle assessment and embodied energy are discussed as well. The embodied energy of the system turns out to be approximately two and a half times that of conventional wood-frame system. The paper provides some concluding remarks regarding the sustainability aspects.


2019 ◽  
Vol 267 ◽  
pp. 02001
Author(s):  
Liangli Xiao ◽  
Yan Liu ◽  
Zhuang Du ◽  
Zhao Yang ◽  
Kai Xu

This study combines specific high-rise shear wall residential projects with the Revit to demonstrate BIM application processes. The use of R-Star CAD may help to realize the link barrier of the building information model and the structural analysis software PKPM. Sequentially, the information supplement of the structural analysis model is completed by extracting the structural information with the Revit secondary development. By the collaborative design platform based on BIM technology, the paper examines the collision check of structural model, conducts collision analysis on other professional models and modifies the design scheme for conflict points. After the statistics of material usage, an optimized design is proposed. The findings of this paper could contribute to provide some reference for the specific application of BIM in structural design and realize the application of BIM technology in the process of building structure design.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3241
Author(s):  
Krzysztof Powała ◽  
Andrzej Obraniak ◽  
Dariusz Heim

The implemented new legal regulations regarding thermal comfort, the energy performance of residential buildings, and proecological requirements require the design of new building materials, the use of which will improve the thermal efficiency of newly built and renovated buildings. Therefore, many companies producing building materials strive to improve the properties of their products by reducing the weight of the materials, increasing their mechanical properties, and improving their insulating properties. Currently, there are solutions in phase-change materials (PCM) production technology, such as microencapsulation, but its application on a large scale is extremely costly. This paper presents a solution to the abovementioned problem through the creation and testing of a composite, i.e., a new mixture of gypsum, paraffin, and polymer, which can be used in the production of plasterboard. The presented solution uses a material (PCM) which improves the thermal properties of the composite by taking advantage of the phase-change phenomenon. The study analyzes the influence of polymer content in the total mass of a composite in relation to its thermal conductivity, volumetric heat capacity, and diffusivity. Based on the results contained in this article, the best solution appears to be a mixture with 0.1% polymer content. It is definitely visible in the tests which use drying, hardening time, and paraffin absorption. It differs slightly from the best result in the thermal conductivity test, while it is comparable in terms of volumetric heat capacity and differs slightly from the best result in the thermal diffusivity test.


2021 ◽  
Vol 11 (15) ◽  
pp. 7121
Author(s):  
Shouke Li ◽  
Feipeng Xiao ◽  
Yunfeng Zou ◽  
Shouying Li ◽  
Shucheng Yang ◽  
...  

Wind tunnel tests are carried out for the Commonwealth Advisory Aeronautical Research Council (CAARC) high-rise building with a scale of 1:400 in exposure categories D. The distribution law of extreme pressure coefficients under different conditions is studied. Probability distribution fitting is performed on the measured area-averaged extreme pressure coefficients. The general extreme value (GEV) distribution is preferred for probability distribution fitting of extreme pressure coefficients. From the comparison between the area-averaged coefficients and the value from GB50009-2012, it is indicated that the wind load coefficients from GB50009-2012 may be non-conservative for the CAARC building. The area reduction effect on the extreme wind pressure is smaller than that on the mean wind pressure from the code. The recommended formula of the area reduction factor for the extreme pressure coefficient is proposed in this study. It is found that the mean and the coefficient of variation (COV) for the directionality factors are 0.85 and 0.04, respectively, when the orientation of the building is given. If the uniform distribution is given for the building’s orientation, the mean value of the directionality factors is 0.88, which is close to the directionality factor of 0.90 given in the Chinese specifications.


Sign in / Sign up

Export Citation Format

Share Document