scholarly journals Nonlinear Effect and MAI Impact on SAC-OCDMA System Based on 2D Multi-Diagonal Code and Laser Array

2021 ◽  
Vol 11 (18) ◽  
pp. 8528
Author(s):  
Hichem Mrabet ◽  
Faouzi Bahloul ◽  
Abdullah S. Karar ◽  
Abdelhamid Cherifi ◽  
Aymen Belghith

A new architecture for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) system based on two Dimensional Multi Diagonal (2D-MD) codes named 2D-MD SAC-OCDMA and utilizing a laser optical source is proposed for Long-Reach Passive Optical Network (LR-PON). In this work, a computer simulator tool is used, for the first time, as a SAC-OCDMA simulation set-up utilizing the unique combination of a coherent laser array and 2D-MD codes. In addition, the system performance is addressed numerically by taking into account Multiple Access Interference (MAI), optical coherent source noise, first, second and third order fiber dispersion, nonlinear effects and photo-detector noise. Simulation results indicate that for a single user (i.e., without considering MAI), the system can operate at a maximum bit rate of 55 Gb/s over 250 km of Single Mode Fiber (SMF), with a Bit Error Rate (BER) below 10−9 (Q-limit = 15.5 dB), when only first order fiber dispersion is considered. However, including the effects of second and third order fiber dispersion as frequency domain parameters, results in a reduction of the maximum bit rate to 40 Gb/s, while maintaining a Q-factor above the Q-limit under the same transmission distance. Furthermore, we demonstrate that the proposed architecture extends the SMF transmission reach up to 600 km and 480 km, when considering linear and nonlinear effects, respectively. Finally, we show that our proposed 2D-MD SAC-OCDMA system outperforms existing solutions presented in the literature for LR-PON configuration, in terms of both aggregate bit rate and transmission reach.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Waqas A. Imtiaz ◽  
Affaq Qamar ◽  
Atiq Ur Rehman ◽  
Haider Ali ◽  
Adnan Rashid Chaudhry ◽  
...  

This paper presents an efficient tree-based hybrid spectral amplitude coding optical code division multiple access (SAC-OCDMA) system that is able to provide high capacity transmission along with fault detection and restoration throughout the passive optical network (PON). Enhanced multidiagonal (EMD) code is adapted to elevate system’s performance, which negates multiple access interference and associated phase induced intensity noise through efficient two-matrix structure. Moreover, system connection availability is enhanced through an efficient protection architecture with tree and star-ring topology at the feeder and distribution level, respectively. The proposed hybrid architecture aims to provide seamless transmission of information at minimum cost. Mathematical model based on Gaussian approximation is developed to analyze performance of the proposed setup, followed by simulation analysis for validation. It is observed that the proposed system supports 64 subscribers, operating at the data rates of 2.5 Gbps and above. Moreover, survivability and cost analysis in comparison with existing schemes show that the proposed tree-based hybrid SAC-OCDMA system provides the required redundancy at minimum cost of infrastructure and operation.


2021 ◽  
Author(s):  
Abdelhamid Cherifi ◽  
KHALED Meftah ◽  
DAHANI Ameur ◽  
mohaned alayedi ◽  
hichem mrabet

Abstract A two dimensional spectral/spatial cyclic shift (2D-CS) optical code division multiple access (OCDMA) systems is proposed for a potentially next generation passive optical network (NG-PON) implementation called (2D-CS NG-OCDMA-PON) system. The2D-CS proposed code is characterized by a high capacity and a zero cross correlation property leads to completely eliminating the multiple access interference (MAI) effect that is considered as the main OCDMA system drawback. Firstly, the 2D-CScode construction is investigated from 1D-CS code. Secondly, a system description is provided by exhibiting the transmitter and receiver architecture in the PON context. Analytical analysis reveals that our proposed 2D-CScode outperforms similar codes such as perfect difference (2D-PD) and dynamic cyclic shift (2D-DCS) codes in terms of spectral efficiency, simultaneous network subscribers and data bit rate. In addition, based on numerical analysis 2D-CS NG-OCDMA-PON system shows a good system performance by means of avery low BER and a high Q-factor values equal to\({10}^{-26}\) and 10.41 dB, respectively. Likewise, for four users and free-amplification the achievable reach ability distance of the NG-OCDMA-PON system is 63.21 km, 43.57 km and 33.2 km while Q-factor is equal to 6 dB at a bit rate of 622Mb/s, 1Gb/s and 1.5 Gb/s, respectively. On the other side, according to the system setup the number of single mode fiber (SMF) is reduced to the half compared to other 2D-OCDMA-PON systems based on enhanced multi diagonal (EMD) and single weight ZCC (SWZCC) codes.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Majidah H. Majeed ◽  
Riyadh Khlf Ahmed

AbstractSpectral Amplitude Coding-Optical Codes Division Multiple Access (SAC-OCDMA) is a future multiplexing technique that witnessed a dramatic attraction for eliminating the problems of the internet in optical network field such as multiple-user access and speed’s growth of the files or data traffic. In this research article, the performance of SAC-OCDMA system based on two encoding–decoding multidiagonal (MD) and Walsh Hadamard (WH) codes is enhanced utilizing three different schemes of dispersion compensating fiber (DCF): pre-, post- and symmetrical compensation. The system is simulated using Optisystem version 7.0 and Optigrating version 4.2. The performance of the proposed system is specified in terms of bit error rate (BER), Q-factor and eye diagram. It has been observed that the compensated system based on MD code is performs much better compared to the system based on WH code. On the other hand, the compensated SAC-OCDMA system with symmetrical DCF has the lowest values of BER and largest values of Q-factor, so it is considered the best simulated scheme contrasted with pre- and post-DCF.


2018 ◽  
Vol 39 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Manisha Bharti ◽  
Manoj Kumar ◽  
Ajay K. Sharma

AbstractThe main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.


2018 ◽  
Vol 39 (4) ◽  
pp. 459-462 ◽  
Author(s):  
Monika Rani ◽  
Harbax Singh Bhatti ◽  
Vikramjeet Singh

Abstract In this manuscript, we have analyzed a Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) System. The system performance is enhanced by reducing the effect of Multiple Access Interference (MAI) using uniform Fiber Bragg Gratings (FBGs) encoders and decoders at central office and subscriber’s end. The results are verified through a mathematical model and Modified Double Weight (MDW) codes for the proposed system using Adomian Decomposition Method (ADM). Further, we have demonstrated SAC-OCDMA system for transmission of 40 Gbps data rate up to a distance of 80 km by increasing the number of FBGs. The proposed system has been analyzed in terms of distance, bit error rate (BER) and Quality Factor.


2018 ◽  
Vol 8 (10) ◽  
pp. 1861 ◽  
Author(s):  
Somia Abd El-Mottaleb ◽  
Heba Fayed ◽  
Ahmed Abd El-Aziz ◽  
Mohamed Metawee ◽  
Moustafa Aly

In this paper, the performance of a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system is investigated utilizing a single photodiode (SPD) detection technique. The proposed system uses enhanced double weight (EDW) codes as signature codes with three simultaneous users to overcome both phase-induced intensity noise (PIIN) and multiple access interference (MAI). In addition, a dispersion compensating fiber (DCF) is used in order to decrease the group velocity dispersion (GVD) caused in the single mode fiber. An erbium-doped fiber amplifier (EDFA) is used to overcome the attenuation. The use of both DCF and EDFA leads to an appreciable enhancement in the system performance. The system performance is evaluated through its bit error rate (BER), Q-factor, and received power. A comparison between the EDW codes and modified double weight (MDW) codes on the SAC-OCDMA system is demonstrated. Simulation is carried out through Optisystem ver. 7. The simulation results show that: (a) using an avalanche photodiode (APD) over PIN photodiode allows data transmission over longer distances; (b) the use of DCF improves the system BER;(c) using MDW codes gives better BER than using EDW codes.


2013 ◽  
Vol 05 (02) ◽  
pp. 49-57 ◽  
Author(s):  
Glendo de Freitas Guimarães ◽  
Agliberto Melo Bastos ◽  
Alisson da Conceição Ferreira ◽  
Alex Sander Barros Queiroz ◽  
José Wally Mendonça Menezes ◽  
...  

Author(s):  
M. K.A. Abdullah ◽  
S. A. Aljunid ◽  
M. D.A. Samad ◽  
S. B.A. Anas ◽  
R. K.Z. Sahbudin

Many codes have been proposed for optical CDMA system as discussed in Svetislav, Mari, Zoran, Kosti, and Titlebaum (1993), Salehi (1989), Liu and Tsao (2002), Maric, Moreno, and Corrada (1996), Wei and Ghafouri-Shiraz (2002), and Prucnal, Santoro, and Ting (1986). Optical code division multiple access (OCDMA) has been recognized as one of the most important technologies for supporting many users in shared media simultaneous, and in some cases can increase the transmission capacity of an optical fiber. OCDMA is an exciting developments in short haul optical networking because it can support both wide and narrow bandwidth applications on the same network, it connects large number of asynchronous users with low latency and jitter, and permits quality of service guarantees to be managed at the physical layer, offers robust signal security and has simplified network topologies. However, for improperly designed codes, the maximum number of simultaneous users and the performance of the system can be seriously limited by the multiple access interference (MAI) or crosstalk from other users. Another issue in OCDMA is how the coding is implemented. The beginning idea of OCDMA was restricted in time domain, in which the encoding/decoding could not been fully utilized in optical domain. Therefore a new coding in OCDMA has been introduced based on spectral encoding (Kavehrad & Zaccarin, 1995; Pearce & Aazhang, 1994; Smith, Blaikie, & Taylor, 1998; Wei & Ghafouri-Shiraz, 2002). The system, called Optical Spectrum CDMA, or OS-CDMA, has the advantage of using inexpensive optical sources, and simple direct detection receivers. In this article with an emphasis on the Spectral Amplitude Coding scheme, a new code known as Khazani-Syed (KS) code is introduced.


Sign in / Sign up

Export Citation Format

Share Document