scholarly journals An Enhanced Frequency Response Strategy of a DFIG Based on Over-Speed De-Loaded Curve

2021 ◽  
Vol 11 (19) ◽  
pp. 9324
Author(s):  
Yien Xu ◽  
Hongmei Wang ◽  
Dejian Yang

The increasing level of wind power penetration is seriously threatening the frequency stability of the power system. In this article, we suggest an enhanced frequency response strategy of a doubly fed induction generator (DFIG) based on over-speed de-loaded curve using a novel power function to boost the frequency nadir and settling frequency and reduce the maximum rate of change of frequency (ROCOF) with more efficiency. To achieve this objective, the reference power increases to the torque limit at the de-load operating point and then decreases with the rotor speed toward the maximum power point tracking operating conditions. The simulation results on various wind power penetrations clearly demonstrated that the enhanced frequency response strategy is beneficial to boosting the frequency nadir and settling frequency and reduce the ROCOF.

Author(s):  
Mohamed Mahmoud Ismail

This paper presents 200 KW three phase standalone photovoltaic systems supplying pumping station consist of four pumps 40 KW rating. The system utilizes a two stage energy conversion power conditioning unit topology composed of a DC-DC boost converter and three level-three phase voltage source inverter (VSI). The Boost converter in this paper is designed to operate in continuous mode and controlled for maximum power point tracking (MPPT). The fluctuating output power of the PV array system during the day is the commonly problem in the power system.  In this paper a nickel-Cadmium battery will be used to maintain the output power generated from the PV array supplying the pumps to be constant all the day under different operating conditions. The system is modeled and studied using MATLAB/Simulink


Sign in / Sign up

Export Citation Format

Share Document