scholarly journals An Experimental Study on the Mechanical Properties of a High Damping Rubber Bearing with Low Shape Factor

2021 ◽  
Vol 11 (21) ◽  
pp. 10059
Author(s):  
Zhenyuan Gu ◽  
Yahui Lei ◽  
Wangping Qian ◽  
Ziru Xiang ◽  
Fangzheng Hao ◽  
...  

A high damping rubber bearing (HDRB) is widely utilized in base-isolation structures due to its good energy dissipation capacity and environmentally friendly properties; however, it is incapable of isolating the vertical vibration caused by earthquakes and subways effectively. Thick rubber bearings with a low shape factor have become one of the important vertical isolation forms. This paper provides an experimental comparative study on high damping rubber bearings with low shape factor (HDRB-LSF), thick lead–rubber bearings (TLRB), and lead–rubber bearings (LRB). The abilities of the bearing and energy dissipation of the above bearings are analyzed contrastively considering the influence of vertical pressure, loading frequency, shear strain, and pre-pressure. Firstly, the HDRB-LSF, TLRB, and LRB are designed according to the Chinese Code for seismic design of buildings. Secondly, cyclic vertical compression tests and horizontal shear tests, as well as their correlation tests, are conducted, respectively. The vibrational characteristics and hysteresis feature of these three bearings are critically compared. Thirdly, a corrected calculation of vertical stiffness for the thick rubber bearings is proposed based on the experimental data to provide a more accurate and realistic tool measuring the vertical mechanical properties of rubber bearings. The test results proved that the HDRB-LSF has the most advanced performance of the three bearings. For the fatigue property, the hysteresis curves of the HDRB-LSF along with TLRB are plump both horizontally and vertically, thus providing a good energy dissipation effect. Regarding vertical stiffness, results from different loading cases show that the designed HDRB-LSF possesses a better vertical isolation effect and preferable environmental protection than LRB, a larger bearing capacity, and, similarly, a more environmentally friendly property than TLRB. Hence, it can avoid the unfavorable resonance effect caused by vertical periodic coupling within the structure. All the experimental data find that the proposed corrected equation can calculate the vertical stiffness of bearings with a higher accuracy. This paper presents the results of an analytical, parametric study that aimed to further explore the low shape factor concepts of rubber bearings applied in three-dimensional isolation for building structures.

Author(s):  
Jun-Ping Pu ◽  
C. S. Tsai ◽  
Jian-Fa Huang ◽  
Bo-Jen Chen ◽  
Yao-Min Fang

In recent years, many studies on base isolation strategies and devices have been developed and applied in U. S. A., Europe, Japan, and New Zealand. The high damping rubber bearing belongs to one kind of the earthquake-proof ideas of base isolation technologies. The installation of high damping rubber bearings can lengthen the natural period of a building and simultaneously reduce the earthquake-induced energy trying to impart to the building. The objective of this paper is to investigate the base isolation effect of high damping rubber bearings. The uniaxial, biaxial, and triaxial shaking table tests were performed to study the seismic behavior of a 0.4-scale three-story isolated steel structure in the National Center for Research on Earthquake Engineering in Taiwan. The experimental and analytical results show that the nonlinear mechanical characteristics of the high damping rubber bearings can be reasonably simulated.


2020 ◽  
Vol 6 (2) ◽  
pp. 181-194
Author(s):  
Syahnandito ◽  
Reni Suryanita ◽  
Ridwan

Salah satu cara yang dapat dilakukan adalah menggunakan peredam beban gempa dengan sistem isolasi dasar (base isolation system). Penggunaan base isolation system  pada bangunan dapat mengisolasi perambatan getaran akibat gempa dari tanah ke struktur atas bangunan menggunakan komponen berbahan karet. Tujuan penelitian ini adalah untuk menganalisis pengaruh penggunaan sistem isolasi dasar berupa High Damping Rubber Bearing pada periode dan gaya geser dasar  struktur beton bertulang. Objek penelitian adalah bangunan hotel 15 lantai dengan ketinggian 62,9 m. Penelitian diawali dengan pemodelan struktur menggunakan aplikasi ETABS v2016 sehingga didapatkan periode dan gaya geser dasar struktur fixbase. Tahap selanjutnya memberikan gaya pada model struktur dengan isolasi dasar High Dumper Rubber Bearing sehingga didapatkan periode dan gaya geser dasar struktur dengan base isolator. Hasil analisis pada struktur fixbase didapatkan periode sebesar 4,212 detik, dengan gaya geser dasar didapatkan sebesar 1470,725 ton. Sedangkan hasil analisis pada struktur dengan base isolator didapatkan periode sebesar 5,500 detik, dengan gaya geser dasar didapatkan sebesar 1286,071 ton. Maka dapat disimpulkan bahwa pada struktur dengan base isolator terjadi peningkatan periode sebesar 30,58 %, sedangkan gaya geser dasar terjadi penurunan 12,56 %.


2020 ◽  
Vol 26 (19-20) ◽  
pp. 1646-1655
Author(s):  
Shen-Haw Ju

This study investigates the derailment of trains moving on bridges with lead rubber bearings. A moving wheel/rail axis element that couples two wheels and rails together is first developed to generate a train finite element model with 12 cars, while the sliding, sticking, and separation modes of the wheels and rails are accurately simulated. The finite element results indicate that the base shear of the bridge with lead rubber bearings is much smaller than that without lead rubber bearings. Similar to the base shear, the train derailment coefficients for the bridge with lead rubber bearings are much smaller than those without lead rubber bearings because yield lead rubber bearings during large seismic loads can change the bridge natural frequency to avoid resonance. For earthquakes with a very long dominant period, the lead rubber bearing effect to reduce the train derailment may not be obvious because the natural period of the bridge due to the full yield of lead rubber bearings can approach the dominant period of the earthquake.


2014 ◽  
Vol 7 (6) ◽  
pp. 1141-1169
Author(s):  
Patrick L.Y. Tiong ◽  
Azlan Adnan ◽  
Ahmad B.A. Rahman ◽  
Abdul K. Mirasa

2012 ◽  
Vol 234 ◽  
pp. 90-95 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present paper two different base isolation systems, designed and verified according to the european seismic code (EC2 and EC8), are compared for evaluating the behaviour of a base isolated building, highly irregular in plan, in presence of a seismic excitation. The devices adopted for realizing the different base isolation systems are the High Damping Rubber Bearing (HDRB) and the Lead Rubber Bearing (LRB) both of them actuated in parallel with a Friction Slider (FS). A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions, compatible with the reference elastic response spectrum for each limit state have been used for a more realistic evaluation of the seismic response of the structure and a more realistic comparative analysis between the base isolated structure with the different considered base isolation systems and the traditional fixed base structure.


Sign in / Sign up

Export Citation Format

Share Document