scholarly journals Analysis of Thermomechanical Stresses of a Photovoltaic Panel Using a Passive System of Cooling

2021 ◽  
Vol 11 (21) ◽  
pp. 9806
Author(s):  
Brayan L. Pérez Escobar ◽  
Germán Pérez Hernández ◽  
Arturo Ocampo Ramírez ◽  
Lizeth Rojas Blanco ◽  
Laura L. Díaz Flores ◽  
...  

In this paper, the gradient temperature and the thermomechanical stresses of a photovoltaic panel has been studied with and without heatsink. For this purpose, a three-dimensional analysis was carried out. Accordingly, a heat transfer analysis was developed. The numerical results show a cooling close to 26.7% with the proposed triangle fins compared with the rectangular fins studied before by another author, and the temperature distribution was determined. With this information, the stress analysis was carried out in order to find the effect on the panel due to the thermomechanical stresses. The aluminium frame was restricted to move freely. The resulting stresses field established the magnitude of the alternative stresses, resulting in a 6.7% drop compared with a reference panel. The guidelines of IEC 61215 have to be take into account. Due to the results obtained, the use of this kind of system in desert conditions is desirable because of its high operational temperature and due to the increase in heat transfer by the fins.

Author(s):  
Vai-Man Lei ◽  
Tomoki Kawakubo

The capability to calculate impeller temperature distribution is important to the life estimation of a centrifugal compressor. Three dimensional conjugate heat transfer (3D CHT) analysis with a high fidelity flow solver has become an indispensable tool for this class of problem. However, the application of 3D CHT analysis in the preliminary design of centrifugal compressor, which may involve the rapid evaluation of a large number of different configurations, is limited by the computation resource and setup time requirement. This paper presents a method of conjugate heat transfer analysis for centrifugal compressor design that requires significantly less computation power and setup time. The method, which consists of a one-dimensional flow model of the gas path and an axisymmetric CHT/flow solver, has been evaluated with data from 3D CHT analysis and experiment. Good agreement in impeller temperature distribution, as well as in impeller temperature trends due to changes in operating condition are obtained. To demonstrate the application of this method, various strategies to lower the impeller temperature are evaluated and discussed.


1980 ◽  
Vol 102 (3) ◽  
pp. 660-665
Author(s):  
S. M. Cho ◽  
R. S. Kane

A thermal/hydraulic analysis of the check valves in liquid sodium service for LMFBR plants is required to provide temperature data for thermal stress analysis of the valves for specified transient conditions. Because of the complex three-dimensional flow pattern within the valve, the heat transfer analysis techniques for less complicated shapes could not be used. This paper discusses the thermal analysis techniques used to assure that the valve stress analysis is conservative. These techniques include a method for evaluating the recirculating flow patterns and for selecting appropriately conservative heat transfer correlations in various regions of the valve.


Author(s):  
Shigeki Hirasawa ◽  
Shigenao Maruyama

A three-dimensional radiation-heat-transfer analysis and a convection-heat-transfer analysis are combined in order to determine the temperature distribution in a rotating wafer in a cylindrical lamp heating apparatus for rapid thermal processing. The calculated results show that the temperature variation in the wafer increases 1.4 K by the effect of natural convection, when inlet gas velocity is 0.1 m/s during 1273 K steady-state heating of the non-rotating wafer. The effect of gas convection on the temperature variations in the wafer can be minimized when the wafer is rotating in an axisymmetric apparatus and the heating rates of the lamps are optimally controlled.


Author(s):  
Kimihide Odagiri ◽  
Kieran Wolk ◽  
Stefano Cappucci ◽  
Stefano Morellina ◽  
Scott Roberts ◽  
...  

Author(s):  
Si-Hwa Jeong ◽  
Min-Gu Won ◽  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
...  

In this paper, the thermal stress characteristics of the pipe-in-pipe (PIP) system under high temperature condition are analyzed. The PIP is a type of pipe applied in sodium-cooled faster reactor (SFR) and has a different geometry from a single pipe. In particular, under the high temperature condition of the SFR, the high thermal stress is generated due to the temperature gradient occurring between the inner pipe and outer pipe. To investigate the thermal stress characteristics, three cases are considered according to geometry of the support. The fully constrained support and intermediate support are considered for case 1 and 2, respectively. For case 3, both supports are applied to the actual curved pipe. The finite element (FE) analyses are performed in two steps for each case. Firstly, the heat transfer analysis is carried out considering the thermal conduction, convection and radiation conditions. From the heat transfer analysis, the temperature distribution results in the piping system are obtained. Secondly, the structural analysis is performed considering the temperature distribution results and boundary conditions. Finally, the effects of the geometric characteristics on the thermal stress in the PIP system are analyzed.


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


Author(s):  
Jinliang Yuan ◽  
Masoud Rokni ◽  
Bengt Sunde´n

In this study, a fully three-dimensional calculation method has been further developed to simulate and analyze various processes in a thick anode duct. The composite duct consists of a porous layer, the flow duct and solid current connector. The analysis takes the electrochemical reactions into account. Momentum and heat transport together with gas species equations have been solved by coupled source terms and variable thermo-physical properties (such as density, viscosity, specific heat, etc.) of the fuel gases mixture. The unique fuel cell conditions such as the combined thermal boundary conditions on solid walls, mass transfer (generation and consumption) associated with the electrochemical reaction and gas permeation to / from the porous electrode are applied in the analysis. Results from this study are presented for various governing parameters in order to identify the important factors on the fuel cell performance. It is found that gas species convection has a significant contribution to the gas species transport from / to the active reaction site; consequently characteristics of both gas flow and heat transfer vary widely due to big permeation to the porous layer in the entrance region and species mass concentration related diffusion after a certain distance downstream the inlet.


Sign in / Sign up

Export Citation Format

Share Document