scholarly journals Biochar-Improved Growth and Physiology of Ehretia asperula under Water-Deficit Condition

2021 ◽  
Vol 11 (22) ◽  
pp. 10685
Author(s):  
Thi-Lan-Huong Hoang ◽  
Dong-Cheol Jang ◽  
Quang-Tin Nguyen ◽  
Won-Ho Na ◽  
Il-Seop Kim ◽  
...  

Ehretia asperula’s physiological responses to growth performance following oak-wood biochar application under water stress conditions (WSC) and no water stress conditions (non-WSC) were investigated in a pot experiment. Biochar (WB) was incorporated into the soil at concentrations of 0, 5, 10, 15, and 20 tons ha−1 before transplanting Ehretia asperula in the pots. One month after transplanting, Ehretia asperula plants were put under water stress by withholding water for ten days. Water stress significantly decreased the growth and physiology of Ehretia asperula. Under WSC, the application of WB at the concentrations of 15 and 20 tons ha−1 to the soil increased the plant height; number of leaves; fresh and dry weight of the roots, shoots, and leaves; Fv/Fm; chlorophyll content; leaf relative water content; and soil moisture as well as decreased the relative ion leakage. The application of WB enhanced drought tolerance in Ehretia asperula plants by lowering the wilting point. The findings suggest that WB application at the concentration of 15 tons ha−1 could be recommended for ensuring the best physiological responses and highest growth of Ehretia asperula plants.

2008 ◽  
Vol 20 (1) ◽  
pp. 29-37 ◽  
Author(s):  
José Beltrano ◽  
Marta G. Ronco

The aim of this paper was to investigate the contribution of the arbuscular mycorrhizal fungus Glomus claroideum to drought stress tolerance in wheat plants grown under controlled conditions in a growth chamber, and subjected to moderate or severe water stress and rewatering. Water stress tolerance was determined through total dry weight, leaf relative water content, leakage of solutes and leaf chlorophyll and protein concentrations in mycorrhizal and non-mycorrhizal wheat plants. Total dry weight and leaf chlorophyll concentrations were significantly higher in mycorrhizal plants after moderate or severe water stress treatments compared with non-mycorrhizal ones. Electrolyte leakage was significantly lower in water-stressed inoculated plants. Compared to non-inoculated plants, leaf relative water content and total protein concentration of inoculated individuals increased only under severe water stress. When irrigation was re-established, mycorrhizal plants increased their total dry weight and leaf chlorophyll concentration, and recovered cell membrane permeability in leaves compared with non-mycorrhizal plants. In conclusion, root colonization by G. claroideum could be an adequate strategy to alleviate the deleterious effects of drought stress and retard the senescence syndrome in wheat.


2016 ◽  
Vol 27 (2) ◽  
pp. 128-135 ◽  
Author(s):  
J Akte ◽  
S Yasmin ◽  
MJH Bhuiyan ◽  
F Khatun ◽  
J Roy ◽  
...  

Five rice varieties viz. Binadhan-4, Binadhan-5, Binadhan-6, Binadhan-10 and Iratom-24 were evaluated in vitro under different water stress conditions. Several parameters such as germination percentage, shoot length, root length, shoot-root ratio, fresh weight, dry weight, turgid weight, relative water content and proline accumulation were studied. Drought condition was created by MS medium supplemented with five treatments of PEG, with a control such as 0%, 1%, 2%, 3% and 4% of PEG. The highest germination (100%) was found in the variety Binadhan-10 under low water stress conditions induced by 1% PEG. Similarly, the highest percentage of germination was found in all varieties under control condition (0% PEG). The lowest percentage of germination was obtained in the variety Iratom-24. But under severe stress (4% PEG), the highest percentage of germination was found only in the variety Binadhan-10. Moreover, the variety Binadhan-10 was found to be the best at 4% PEG for shoot length, root length, shoot-root ratio, relative water content and also the best at 1% PEG for fresh weight, dry weight, turgid weight. Water stress decreased relative water content and increased proline accumulation in rice. The highest relative water content was recorded in the variety Binadhan-10 and the lowest value recorded in the variety Binadhan-5. The highest proline content was obtained from the binadhan-6 at the highest treatment (4% PEG). Binadhan-10 showed the best performance almost in all the parameters under drought stress because of its own nature of tolerancy.Progressive Agriculture 27 (2): 128-135, 2016


2014 ◽  
Vol 700 ◽  
pp. 249-252
Author(s):  
Lin Li ◽  
Zhi Yong Wang ◽  
Guo Ying Zhou ◽  
Xian Liu

The mechanism of resistance enhanced by composite endomycorrhizal and ectomycorrhizal fertilizers under stresses had been studied. The results showed that under water stress, the seedling height, ground diameter, aboveground and underground dry weight, relative water content, WUEof WS+F treatment group were higher than that of WS+NF treatment group, to which were respectively higher 55.09%, 59.22%, 29.98%, 75%, 26.49%、142.86%. The RWD, Pro and MDA content of the inoculation of composite mycorrhizal fungi treatment under the stresses were all significantly decreased. In the aspect of antioxidant enzymes activity, SOD, CAT and POD activity of WS+F treatment group increased than that of WS+NF treatment group to 13.45%、59.88%、45.58%. Because of the series responses of Chinese fir seedling inoculated with the composite mycorrhizal fungi, which were benefit for promoting growth, improving water use efficiency, improving the physicochemical character of soil, etc, the resistance of plant had been improved to stress.


2018 ◽  
Vol 11 ◽  
Author(s):  
Mahmood Attarzadeh ◽  
Hamidreza Balouchi ◽  
Mohammad Reza Baziar

Paclobutrazol is one of the growth regulators in plants. It is from the Triazoles group which can protect plants from all kinds of tension. In order to investigate the effect of cold stress and Paclobutrazol on physiological characteristics of soybean seedling (cv. Williams), a factorial experiment was conducted base on completely randomized design with three replications. The first factor involved applying cold tension at 5ºC in four intervals times (0, 8, 16 and 24 hours). The second factor involved pre-treatment of Paclobutrazol in four concentrations (0, 100, 500 and 1000 μM). The results showed a significant increase in shoot’s dry weight by 100 μM Paclobutrazol application compared to Non-Paclobutrazol in eight hours of cold tension. The highest amount of chlorophyll a and relative water content was shown by 100 and 500 μM Paclobutrazol application, respectively. The increase in cold tension time to 24 hours caused an increase in ion leakage and led to an increase in protein content, catalase and peroxidase antioxidant enzymes. The results of this study demonstrate that cold tension can cause reduction in shoot’s dry matter and change the physiological characteristics of soybean but application of 100 and 500 μM of Paclobutrazol can partly induce tolerance to cold stress.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
M Miftahudin ◽  
Rury Eryna Putri ◽  
Tatik Chikmawati

Abstract. Miftahudin, Putri RE, Chikmawati T. 2020. Vegetative morphophysiological responses of four rice cultivars to drought stress. Biodiversitas 21: 3727-3734. Each rice genotype develops certain morphophysiological responses to drought stress. The study aimed to analyze the morphophysiological responses of vegetative aspect of four rice cultivars to drought stress. A 10% Polyethylene glycol-6000 was added to a Yoshida nutrient solution medium as a drought stress stimulant for four rice cultivars, i.e., IR64, Hawara Bunar, Situbagendit, and Inpago 10. Fourteen-days-old rice seedlings were grown on the media with and without drought stress treatment for 9 days, and morphophysiological characters of vegetative aspects were observed. Drought stress inhibited the shoot growth of cv. Hawara Bunar, but increased shoot growth of cv. Inpago 10. The physiological responses in the form of leaf relative water content, proline, malondialdehyde (MDA), and total chlorophyll contents in cv. Hawara Bunar was inversely proportional to those of cv. IR64 showed an inferior response to drought stress. The rice cv. Hawara Bunar might develop better response mechanisms to drought than that of cv. IR64. The physiological responses of cvs. Situbagendit and Inpago 10 were in between the other two cultivars. We conclude that the variation of morphophysiological responses to drought stress among rice cultivars is an indicator of tolerance capability to drought that could be used as early-growth selection criteria in rice breeding programs for drought tolerance.


2024 ◽  
Vol 84 ◽  
Author(s):  
M. Javed ◽  
M. Iqbal ◽  
H. Bano ◽  
N. Hussain ◽  
A. Ghaffar ◽  
...  

Abstract Growth of plants is severely reduced due to water stress by affecting photosynthesis including photosystem II (PSII) activity and electron transport. This study emphasised on comparative and priority targeted changes in PSII activity due to progressive drought in seven populations of Panicum antidotale (P. antidotale) collected from Cholistan Desert and non-Cholistan regions. Tillers of equal growth of seven populations of P. antidotale grown in plastic pots filled with soil were subjected progressive drought by withholding water irrigation for three weeks. Progressive drought reduced the soil moisture content, leaf relative water content, photosynthetic pigments and fresh and dry biomass of shoots in all seven populations. Populations from Dingarh Fort, Dingarh Grassland and Haiderwali had higher growth than those of other populations. Cholistani populations especially in Dingarh Grassland and Haiderwali had greater ability of osmotic adjustment as reflected by osmotic potential and greater accumulation of total soluble proteins. Maximum H2O2 under water stress was observed in populations from Muzaffargarh and Khanewal but these were intermediate in MDA content. Under water stress, populations from Muzaffargarh and Dingarh Fort had greater K+ accumulation in their leaves. During progressive drought, non-Cholistani populations showed complete leaf rolling after 23 days of drought, and these populations could not withstand with more water stress condition while Cholistani populations tolerated more water stress condition for 31 days. Moreover, progressive drought caused PSII damages after 19 days and it became severe after 23 days in non-Cholistani populations of P. antidotale than in Cholistani populations.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 6 ◽  
Author(s):  
Hosam O. Elansary ◽  
Eman A. Mahmoud ◽  
Diaa O. El-Ansary ◽  
Mohamed A. Mattar

Natural biostimulants combine different elicitors that may influence economic properties of herbal crops, such as mint. Mint (Mentha longifolia L.) plants were subjected to three water levels based on container substrate capacity (CSC; 100% CSC, 70% CSC, and 50% CSC) and/or applications of four biostimulants (CRADLE™, Mobilizer™, Nanozim De’Lite™ [ND], and Nanozim NXT™ [NN]). ND and NN exhibited higher vegetative growth and root dry weight than the control (without biostimulants) and other treatments. NN produced the highest fresh and dry mint yields under all water levels. Irrigation water-use efficiency (IWUE) of NN was highest (2.78 kg m−3) with 70% CSC, whereas the control produced the lowest IWUE (1.85 kg m−3) with 100% CSC. Biostimulants boosted physiological and metabolic responses, including gas exchange, leaf water potential, relative water content, and proline accumulation of stressed plants. NN treatment with 70% CSC had the highest essential oil (EO) ratio (3.35%). Under 70% and 50% CSC with NN treatment, the proportion of 1,8-cineol increased and that of pulegone decreased in EOs. Increased antioxidant activities, reduced H2O2 levels, and increased catalase and superoxide dismutase activities were observed. Applications of ND and NN during water stress conditions increased economic and medicinal properties of mint EOs with applications in the agricultural and pharmaceutical industries.


1993 ◽  
Vol 73 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Allen G. Good ◽  
James L. Maclagan

The physiological responses of different species of Brassica to induced drought stress were studied by analysing the relationships between relative water content, leaf water potential and leaf osmotic potential during the onset of drought stress. These data indicate that while there was a decrease in leaf osmotic potential with the onset of drought stress, this did not result from a net increase in solutes. Therefore, these genotypes of Brassica do not appear able to osmoregulate under these drought conditions. Key words: Brassica, drought, osmoregulation, water stress


1977 ◽  
Vol 17 (87) ◽  
pp. 598 ◽  
Author(s):  
MJ Fisher ◽  
NA Campbell

In order to understand more fully the effect of water stress on the growth of Townsville stylo (Stylosanthes humilis) (TS), five drought treatments, imposed by the use of rain shelters, were compared with an unstressed control in a field experiment. Droughts were imposed during the early vegetative (EV) and late vegetative (LV) stages, and during flowering (F) until leaf relative water content at 2.30 p.m fell to 60 per cent. Further unrelieved drought was re-applied to these three treatments when seeding was well advanced. The other two treatments were subjected to unrelieved drought, one starting at late flowering (LF) and the other seeding (S). The drought treatments had no effect on the final yield of dry matter compared with the control. Stress during the vegetative stage reduced growth, but the relief of stress was followed by a period of rapid growth which largely compensated for the loss. However, because the EV stress killed 40 per cent of the sward (the plants were unable to use water from depths below 75-1 00 cm), the compensatory phase in this treatment was less marked, but more sustained. Because of the decline in growth rate with approaching maturity, stresses during and after flowering had little effect on yield. Stress during vegetative growth hastened flowering by two weeks; however, pod yields were only reduced in the LF treatment. In general these observations demonstrate important aspects of the plants' good adaptation to the dry monsoonal tropics, and explain its stable long-term yields when maintained in near-pure swards.


Sign in / Sign up

Export Citation Format

Share Document