scholarly journals Contactless Vital Sign Monitoring System for Heart and Respiratory Rate Measurements with Motion Compensation Using a Near-Infrared Time-of-Flight Camera

2021 ◽  
Vol 11 (22) ◽  
pp. 10913
Author(s):  
Kaiwen Guo ◽  
Tianqu Zhai ◽  
Elton Pashollari ◽  
Christopher J. Varlamos ◽  
Aymaan Ahmed ◽  
...  

This study describes a contactless vital sign monitoring (CVSM) system capable of measuring heart rate (HR) and respiration rate (RR) using a low-power, indirect time-of-flight (ToF) camera. The system takes advantage of both the active infrared illumination as well as the additional depth information from the ToF camera to compensate for the motion-induced artifacts during the HR measurements. The depth information captures how the user is moving with respect to the camera and, therefore, can be used to differentiate where the intensity change in the raw signal is from the underlying heartbeat or motion. Moreover, from the depth information, the system can acquire respiration rate by directly measuring the motion of the chest wall during breathing. We also conducted a pilot human study using this system with 29 participants of different demographics such as age, gender, and skin color. Our study shows that with depth-based motion compensation, the success rate (system measurement within 10% of reference) of HR measurements increases to 75%, as compared to 35% when motion compensation is not used. The mean HR deviation from the reference also drops from 21 BPM to −6.25 BPM when we apply the depth-based motion compensation. In terms of the RR measurement, our system shows a mean deviation of 1.7 BPM from the reference measurement. The pilot human study shows the system performance is independent of skin color but weakly dependent on gender and age.

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1056
Author(s):  
Marcus Baumgart ◽  
Norbert Druml ◽  
Markus Dielacher ◽  
Cristina Consani

Robust, fast and reliable examination of the surroundings is essential for further advancements in autonomous driving and robotics. Time-of-Flight (ToF) camera sensors are a key technology to measure surrounding objects and their distances on a pixel basis in real-time. Environmental effects, like rain in front of the sensor, can influence the distance accuracy of the sensor. Here we use an optical ray-tracing based procedure to examine the rain effect on the ToF image. Simulation results are presented for experimental rain droplet distributions, characteristic of intense rainfall at rates of 25 mm/h and 100 mm/h. The ray-tracing based simulation data and results serve as an input for developing and testing rain signal suppression strategies.


2017 ◽  
Vol 71 ◽  
pp. 240-256 ◽  
Author(s):  
Carlos A. Luna ◽  
Cristina Losada-Gutierrez ◽  
David Fuentes-Jimenez ◽  
Alvaro Fernandez-Rincon ◽  
Manuel Mazo ◽  
...  

PEDIATRICS ◽  
1995 ◽  
Vol 95 (1) ◽  
pp. 161-162
Author(s):  
Gerald H. Katzman

Presently, it is recommended that temperature, heart and respiratory rates, skin color, adequacy of peripheral circulation, type of respiration, level of consciousness, tone, and activity be monitored every 30 minutes until the newborn's condition has remained stable for 2 hours.1 Skin color, as the single suggested screen for level of oxygenation, is probably not an adequate indicator of the status of oxygenation. Indeed, the concept of "subcyanotic anoxia"2 is not new. Cyanosis may not be obvious when desaturation is mild.


2013 ◽  
Vol 61 (5) ◽  
pp. 2093-2100 ◽  
Author(s):  
Gabor Vinci ◽  
Stefan Lindner ◽  
Francesco Barbon ◽  
Sebastian Mann ◽  
Maximilian Hofmann ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094237
Author(s):  
Yu He ◽  
Shengyong Chen

The developing time-of-flight (TOF) camera is an attractive device for the robot vision system to capture real-time three-dimensional (3D) images, but the sensor suffers from the limit of low resolution and precision of images. This article proposes an approach to automatic generation of an imaging model in the 3D space for error correction. Through observation data, an initial coarse model of the depth image can be obtained for each TOF camera. Then, its accuracy is improved by an optimization method. Experiments are carried out using three TOF cameras. Results show that the accuracy is dramatically improved by the spatial correction model.


Iproceedings ◽  
10.2196/15203 ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. e15203
Author(s):  
Nicole Polanco ◽  
Sharon Odametey ◽  
Neda Derakhshani ◽  
Mark Khachaturian ◽  
Connor Devoe ◽  
...  

Background Wellness devices for health tracking have gained popularity in recent years. Additionally, portable and readily accessible wellness devices have several advantages when compared to traditional medical devices found in clinical environments. Building tools for patients to manage their health independently may benefit their health in the long run by improving health care providers’ (HCPs) awareness of their patients’ health information outside of the clinic. Increased access to portable wellness devices that track vital signs may increase how patients and HCPs track and monitor chronic conditions which can improve health outcomes. The VitalWellness is a portable wellness device that can potentially aid vital sign measuring for those interested in tracking their health. Objective In this diagnostic accuracy study, we evaluated the clinical performance of the VitalWellness, a wireless, compact, non-invasive device that measures four vital signs using the index finger and forehead against reference vital signs devices used in the hospital setting. Methods Volunteers age ≥18 years were enrolled to provide blood pressure (BP), heart rate (HR), respiratory rate (RR), and body temperature. We recruited volunteers with vital signs that fell within and outside of the normal physiological range, depending on the measurements they consented to undergo. A subgroup of eligible volunteers were asked to undergo an exercise test, aerobic step test and/or a paced breathing test to analyze the VitalWellness device's performance on vital signs outside of the normal physiological ranges for HR and RR. Vital signs measurements were collected with the VitalWellness device and FDA-approved reference devices. Mean, standard deviation, mean difference, standard deviation of difference, standard error of mean difference, and correlation coefficients were calculated for measurements collected; these measurements were plotted on a scatter plot and a Bland-Altman plot. Sensitivity analyses were performed to evaluate the performance of the VitalWellness device by gender, skin color, finger size, and in the presence of artifacts. Results We enrolled 265 volunteers in the study and 2 withdrew before study completion. The majority of volunteers were female (62%), predominately white (63%), graduated from college or post college (67%), and employed (59%). There was a moderately strong linear relationship between VitalWellness BP and reference BP (r=0.7, P<.05) and bewteen VitalWellness RR and reference RR measurements (r=0.7, P<.05). The VitalWellness HR readings were significantly in line with the reference HR readings (r=0.9, P<.05). There was a weaker linear relationship between VitalWellness temperature and reference temperature (r=0.3, P<.05). There were no differences in performance of the VitalWellness device by gender, skin color or in the presence of artifacts. Finger size was associated with differential performance for RR. Conclusions Overall, the VitalWellness device performed well in taking BP, HR and RR when compared to FDA-approved reference devices and has potential serve as a wellness device. To test adaptability and acceptability, future research may evaluate user’s interactions and experiences with the VitalWellness device at home. In addition, the next phase of the study will evaluate transmitting vital sign information from the VitalWellness device to an online secured database where information can be shared with HCPs within seconds of measurement.


Sign in / Sign up

Export Citation Format

Share Document