scholarly journals Control Strategies for Gait Tele-Rehabilitation System Based on Parallel Robotics

2021 ◽  
Vol 11 (23) ◽  
pp. 11095
Author(s):  
Antonio P. L. Bo ◽  
Leslie Casas ◽  
Gonzalo Cucho-Padin ◽  
Mitsuhiro Hayashibe ◽  
Dante Elias

Among end-effector robots for lower limb rehabilitation, systems based on Stewart–Gough platforms enable independent movement of each foot in six degrees of freedom. Nevertheless, control strategies described in recent literature have not been able to fully explore the potential of such a mechatronic system. In this work, we propose two novel approaches for controlling a gait simulator based on Stewart–Gough platforms. The first strategy provides the therapist direct control of each platform using movement data measured by wearable sensors. The following scheme is designed to improve the level of engagement of the patient by enabling a limited degree of control based on trunk inclination. Both strategies are designed to facilitate future studies in tele-rehabilitation settings. Experimental results have illustrated the feasibility of both control interfaces, either in terms of system performance or user subjective evaluation. Technical capacity to deploy in tele-rehabilitation was also verified in this work.

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6722
Author(s):  
Bernhard Hollaus ◽  
Sebastian Stabinger ◽  
Andreas Mehrle ◽  
Christian Raschner

Highly efficient training is a must in professional sports. Presently, this means doing exercises in high number and quality with some sort of data logging. In American football many things are logged, but there is no wearable sensor that logs a catch or a drop. Therefore, the goal of this paper was to develop and verify a sensor that is able to do exactly that. In a first step a sensor platform was used to gather nine degrees of freedom motion and audio data of both hands in 759 attempts to catch a pass. After preprocessing, the gathered data was used to train a neural network to classify all attempts, resulting in a classification accuracy of 93%. Additionally, the significance of each sensor signal was analysed. It turned out that the network relies most on acceleration and magnetometer data, neglecting most of the audio and gyroscope data. Besides the results, the paper introduces a new type of dataset and the possibility of autonomous training in American football to the research community.


2014 ◽  
Vol 701-702 ◽  
pp. 654-658 ◽  
Author(s):  
Yuan Zhang ◽  
Qiang Liu ◽  
Ji Liang Jiang ◽  
Li Yuan Zhang ◽  
Rui Rui Shen

A new upper limb exoskeleton mechanical structure for rehabilitation train and electric putters were used to drive the upper limb exoskeleton and kinematics simulation was carried. According to the characteristics of upper limb exoskeleton, program control and master - slave control two different ways were presented. Motion simulation analysis had been done by Pro/E Mechanism, the motion data of electric putter and major joints had been extracted. Based on the analysis of the movement data it can effectively guide the electric putter control and analysis upper limb exoskeleton motion process.


2018 ◽  
Vol 38 (11) ◽  
pp. 2023-2028
Author(s):  
Rísia L. Negreiros ◽  
José H.H. Grisi-Filho ◽  
Ricardo A. Dias ◽  
Fernando Ferreira ◽  
Valéria S.F. Homem ◽  
...  

ABSTRACT: The analysis of animal movement patterns may help identify farm premises with a potentially high risk of infectious disease introduction. Farm herd sizes and bovine movement data from 2007 in the state of Mato Grosso, Brazil, were analyzed. There are three different biomes in Mato Grosso: the Amazon, Cerrado, and Pantanal. The analysis of the animal trade between and within biomes would enable characterization of the connections between the biomes and the intensity of the internal trade within each biome. We conducted the following analyses: 1) the concentration of cattle on farm premises in the state and in each biome, 2) the number and relative frequency of cattle moved between biomes, and 3) the most frequent purposes for cattle movements. Twenty percent (20%) of the farm premises had 81.15% of the herd population. Those premises may be important not only for the spread of infectious diseases, but also for the implementation of surveillance and control strategies. Most of the cattle movement was intrastate (97.1%), and internal movements within each biome were predominant (88.6%). A high percentage of movement from the Pantanal was to the Cerrado (48.6%), the biome that received the most cattle for slaughter, fattening and reproduction (62.4%, 56.8%, and 49.1% of all movements for slaughter, fattening, and reproduction, respectively). The primary purposes for cattle trade were fattening (43.5%), slaughter (31.5%), and reproduction (22.7%). Presumably, movements for slaughter has a low risk of disease spread. In contrast, movements for fattening and reproduction purposes (66.2% of all movements) may contribute to an increased risk of the spread of infectious diseases.


2014 ◽  
Vol 14 (06) ◽  
pp. 1440004 ◽  
Author(s):  
SHUAI GUO ◽  
JIANCHENG JI ◽  
GUANGWEI MA ◽  
TAO SONG ◽  
JING WANG

After analyzing the rehabilitation needs of stroke patients and the previous studies on lower limb rehabilitation robot, our lower limb rehabilitation robot is designed for stroke patients' gait and balance training. The robot consists of the mobile chassis, the support column and the pelvis mechanism and it is described in detail. As the pelvis mechanism allows most of the patient's motion degrees of freedom (DOFs), the kinematics model of the mechanism is set up, and kinematics simulation is carried out to study the motion characteristics of the mechanism. After analyzing the calculation and simulation results, the pelvis mechanism is proven to measure up to the movement needs of the paralytic's waist and pelvis in walking rehabilitation process.


2010 ◽  
Vol 7 (1) ◽  
pp. 70 ◽  
Author(s):  
S. Thangaprakash ◽  
A. Krishnan

 This paper presents a modified control algorithm for Space Vector Modulated (SVM) Z-Source inverters. In traditional control strategies, the Z-Source capacitor voltage is controlled by the shoot through duty ratio and the output voltage is controlled by the modulation index respectively. Proposed algorithm provides a modified voltage vector with single stage controller having one degree of freedom wherein traditional controllers have two degrees of freedom. Through this method of control, the full utilization of the dc link input voltage and keeping the lowest voltage stress across the switches with variable input voltage could be achieved. Further it offers ability of buck-boost operation, low distorted output waveforms, sustainability during voltage sags and reduced line harmonics. The SVM control algorithm presented in this paper is implemented through Matlab/Simulink tool and experimentally verified with Z-source inverter prototype in the laboratory. 


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6481
Author(s):  
Kristin McClure ◽  
Brett Erdreich ◽  
Jason H. T. Bates ◽  
Ryan S. McGinnis ◽  
Axel Masquelin ◽  
...  

Rapid assessment of breathing patterns is important for several emergency medical situations. In this research, we developed a non-invasive breathing analysis system that automatically detects different types of breathing patterns of clinical significance. Accelerometer and gyroscopic data were collected from light-weight wireless sensors placed on the chest and abdomen of 100 normal volunteers who simulated various breathing events (central sleep apnea, coughing, obstructive sleep apnea, sighing, and yawning). We then constructed synthetic datasets by injecting annotated examples of the various patterns into segments of normal breathing. A one-dimensional convolutional neural network was implemented to detect the location of each event in each synthetic dataset and to classify it as belonging to one of the above event types. We achieved a mean F1 score of 92% for normal breathing, 87% for central sleep apnea, 72% for coughing, 51% for obstructive sleep apnea, 57% for sighing, and 63% for yawning. These results demonstrate that using deep learning to analyze chest and abdomen movement data from wearable sensors provides an unobtrusive means of monitoring the breathing pattern. This could have application in a number of critical medical situations such as detecting apneas during sleep at home and monitoring breathing events in mechanically ventilated patients in the intensive care unit.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 635 ◽  
Author(s):  
Muhammad Iqbal ◽  
Malik Muhammad Nauman ◽  
Farid Ullah Khan ◽  
Pg Emeroylariffion Abas ◽  
Quentin Cheok ◽  
...  

Harvesting biomechanical energy is a viable solution to sustainably powering wearable electronics for continuous health monitoring, remote sensing, and motion tracking. A hybrid insole energy harvester (HIEH), capable of harvesting energy from low-frequency walking step motion, to supply power to wearable sensors, has been reported in this paper. The multimodal and multi-degrees-of-freedom low frequency walking energy harvester has a lightweight of 33.2 g and occupies a small volume of 44.1 cm3. Experimentally, the HIEH exhibits six resonant frequencies, corresponding to the resonances of the intermediate square spiral planar spring at 9.7, 41 Hz, 50 Hz, and 55 Hz, the Polyvinylidene fluoride (PVDF) beam-I at 16.5 Hz and PVDF beam-II at 25 Hz. The upper and lower electromagnetic (EM) generators are capable of delivering peak powers of 58 µW and 51 µW under 0.6 g, by EM induction at 9.7 Hz, across optimum load resistances of 13.5 Ω and 16.5 Ω, respectively. Moreover, PVDF-I and PVDF-II generate root mean square (RMS) voltages of 3.34 V and 3.83 V across 9 MΩ load resistance, under 0.6 g base acceleration. As compared to individual harvesting units, the hybrid harvester performed much better, generated about 7 V open-circuit voltage and charged a 100 µF capacitor up to 2.9 V using a hand movement for about eight minutes, which is 30% more voltage than the standalone piezoelectric unit in the same amount of time. The designed HIEH can be a potential mobile source to sustainably power wearable electronics and wireless body sensors.


2020 ◽  
Vol 27 (9) ◽  
pp. 2577-2590
Author(s):  
Abiola Akanmu ◽  
Johnson Olayiwola ◽  
Oluwole Alfred Olatunji

PurposeCarpenters are constantly vulnerable to musculoskeletal disorders. Their work consists of subtasks that promote nonfatal injuries and pains that affect different body segments. The purpose of this study is to examine ergonomic exposures of carpentry subtasks involved in floor framing, how they lead to musculoskeletal injuries, and how preventive and protective interventions around them can be effective.Design/methodology/approachUsing wearable sensors, this study characterizes ergonomic exposures of carpenters by measuring and analyzing body movement data relating to major subtasks in carpentry flooring work. The exposures are assessed using Postural Ergonomic Risk Assessment classification, which is based on tasks involving repetitive subtasks and nonstatic postures.FindingsThe findings of this paper suggest severe risk impositions on the trunk, shoulder and elbow as a result of the measuring and marking and cutting out vent locations, as well as in placing and nailing boards into place.Research limitations/implicationsBecause of the type and size of wearable sensor used, only results of risk exposures of four body-parts are presented.Practical implicationsThis study draws insights on how to benchmark trade-specific measurement of work-related musculoskeletal disorders. Safety efforts can be targeted toward these risk areas and subtasks. Specifically, results from these will assist designers and innovators in designing effective and adaptable protective interventions and safety trainings.Originality/valueExtant studies have failed to provide adequate evidence regarding the relationships between subtasks and musculoskeletal disorders; they have only mimicked construction tasks through laboratory experimental scenarios. This study adds value to the existing literature, in particular by providing insights into hazards associated with floor carpentry subtasks.


Author(s):  
Stefano Cenci ◽  
Giulio Rosati ◽  
Damiano Zanotto ◽  
Fabio Oscari ◽  
Aldo Rossi

According to a recent report of ILO (International Labour Organization), more than two million people die or loose the working capability every year because of accidents or work-related diseases. A large portion of these accidents are related to the execution of motion and transportation tasks involving heavy duty machines. The insufficient degree of interaction between the human operator and the machine may be regarded as one of the major causes of this phenomenon. The main goal of the tele-operation system presented in this paper is to both preserving slave (machine) stability, by reducing the inputs of slave actuators when certain unsafe working conditions occur, and improving the level of interaction at master (operator) side. Different control schemes are proposed in the paper, including several combinations of master and slave control strategies. The effectiveness of the algorithms is analyzed by presenting some experimental results, based on the use of a two degrees-of-freedom force feedback input device (with one active actuator and one passive stiff joint) coupled with a simulator of a telescopic handler.


Sign in / Sign up

Export Citation Format

Share Document