scholarly journals A Novel Adaptive Sparrow Search Algorithm Based on Chaotic Mapping and T-Distribution Mutation

2021 ◽  
Vol 11 (23) ◽  
pp. 11192
Author(s):  
Xiaoxu Yang ◽  
Jie Liu ◽  
Yi Liu ◽  
Peng Xu ◽  
Ling Yu ◽  
...  

Aiming at the problems of the basic sparrow search algorithm (SSA) in terms of slow convergence speed and the ease of falling into the local optimum, the chaotic mapping strategy, adaptive weighting strategy and t-distribution mutation strategy are introduced to develop a novel adaptive sparrow search algorithm, namely the CWTSSA in this paper. In the proposed CWTSSA, the chaotic mapping strategy is employed to initialize the population in order to enhance the population diversity. The adaptive weighting strategy is applied to balance the capabilities of local mining and global exploration, and improve the convergence speed. An adaptive t-distribution mutation operator is designed, which uses the iteration number t as the degree of freedom parameter of the t-distribution to improve the characteristic of global exploration and local exploration abilities, so as to avoid falling into the local optimum. In order to prove the effectiveness of the CWTSSA, 15 standard test functions and other improved SSAs, differential evolution (DE), particle swarm optimization (PSO), gray wolf optimization (GWO) are selected here. The compared experiment results indicate that the proposed CWTSSA can obtain higher convergence accuracy, faster convergence speed, better diversity and exploration abilities. It provides a new optimization algorithm for solving complex optimization problems.

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Chiwen Qu ◽  
Zhiliu Zeng ◽  
Jun Dai ◽  
Zhongjun Yi ◽  
Wei He

For the deficiency of the basic sine-cosine algorithm in dealing with global optimization problems such as the low solution precision and the slow convergence speed, a new improved sine-cosine algorithm is proposed in this paper. The improvement involves three optimization strategies. Firstly, the method of exponential decreasing conversion parameter and linear decreasing inertia weight is adopted to balance the global exploration and local development ability of the algorithm. Secondly, it uses the random individuals near the optimal individuals to replace the optimal individuals in the primary algorithm, which allows the algorithm to easily jump out of the local optimum and increases the search range effectively. Finally, the greedy Levy mutation strategy is used for the optimal individuals to enhance the local development ability of the algorithm. The experimental results show that the proposed algorithm can effectively avoid falling into the local optimum, and it has faster convergence speed and higher optimization accuracy.


2018 ◽  
Vol 228 ◽  
pp. 01010
Author(s):  
Miaomiao Wang ◽  
Zhenglin Li ◽  
Qing Zhao ◽  
Fuyuan Si ◽  
Dianfang Huang

The classical ant colony algorithm has the disadvantages of initial search blindness, slow convergence speed and easy to fall into local optimum when applied to mobile robot path planning. This paper presents an improved ant colony algorithm in order to solve these disadvantages. First, the algorithm use A* search algorithm for initial search to generate uneven initial pheromone distribution to solve the initial search blindness problem. At the same time, the algorithm also limits the pheromone concentration to avoid local optimum. Then, the algorithm optimizes the transfer probability and adopts the pheromone update rule of "incentive and suppression strategy" to accelerate the convergence speed. Finally, the algorithm builds an adaptive model of pheromone coefficient to make the pheromone coefficient adjustment self-adaptive to avoid falling into a local minimum. The results proved that the proposed algorithm is practical and effective.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zuoxun Wang ◽  
Xinheng Wang ◽  
Chunrui Ma ◽  
Zengxu Song

Accurate and stable power load forecasting methods are essential for the rational allocation of power resources and grid operation. Due to the nonlinear nature of power loads, it is difficult for a single forecasting method to complete the forecasting task accurately and quickly. In this study, a new combined model for power loads forecasting is proposed. The initial weights and thresholds of the extreme learning machine (ELM) optimized by the chaotic sparrow search algorithm (CSSA) and improved by the firefly algorithm (FA) are used to improve the forecasting performance and achieve accurate forecasting. The early local optimum that exists in the sparrow algorithm is overcome by Tent chaotic mapping. A firefly perturbation strategy is used to improve the global optimization capability of the model. Real values from a power grid in Shandong are used to validate the prediction performance of the proposed FA-CSSA-ELM model. Experiments show that the proposed model produces more accurate forecasting results than other single forecasting models or combined forecasting models.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Zhao ◽  
Zhicheng Jia ◽  
Lei Chen ◽  
Yanju Guo

Backtracking search algorithm (BSA) is a relatively new evolutionary algorithm, which has a good optimization performance just like other population-based algorithms. However, there is also an insufficiency in BSA regarding its convergence speed and convergence precision. For solving the problem shown in BSA, this article proposes an improved BSA named COBSA. Enlightened by particle swarm optimization (PSO) algorithm, population control factor is added to the variation equation aiming to improve the convergence speed of BSA, so as to make algorithm have a better ability of escaping the local optimum. In addition, enlightened by differential evolution (DE) algorithm, this article proposes a novel evolutionary equation based on the fact that the disadvantaged group will search just around the best individual chosen from previous iteration to enhance the ability of local search. Simulation experiments based on a set of 18 benchmark functions show that, in general, COBSA displays obvious superiority in convergence speed and convergence precision when compared with BSA and the comparison algorithms.


2021 ◽  
Vol 9 (3-4) ◽  
pp. 89-99
Author(s):  
Ivona Brajević ◽  
Miodrag Brzaković ◽  
Goran Jocić

Beetle antennae search (BAS) algorithm is a newly proposed single-solution based metaheuristic technique inspired by the beetle preying process. Although BAS algorithm has shown good search abilities, it can be easily trapped into local optimum when it is used to solve hard optimization problems. With the intention to overcome this drawback, this paper presents a population-based beetle antennae search (PBAS) algorithm for solving integer programming problems.  This method employs the population's capability to search diverse regions of the search space to provide better guarantee for finding the optimal solution. The PBAS method was tested on nine integer programming problems and one mechanical design problem. The proposed algorithm was compared to other state-of-the-art metaheuristic techniques. The comparisons show that the proposed PBAS algorithm produces better results for majority of tested problems.  


Author(s):  
Binghai Zhou ◽  
Jiahui Xu

To unify the merits of traditional in-plant parts logistics alternatives such as line stocking and kitting, the concept of line-integrated supermarkets is introduced to improve the part feeding in mixed-model assembly lines. First, the highly interdependent optimization problems of assigning stations and scheduling logistics operators are described, and mathematical models are established with the aim to minimize the fleet size of logistics operators and unit part delivery time as well. Together with particular theorems and lemmas, a nested dynamic programming is presented to obtain global optimum for small-sized instances while a modified harmony search algorithm is constructed for medium- or large-sized instances. Benefit from repeatedly dividing and reconstructing the harmony memory, the computation speed is significantly enhanced. Meanwhile, crossover and mutation operations effectively improve the diversity of solutions to overcome deficiencies such as limited search depth and tendencies to trapping into local optimum. Finally, experimental results validate that the proposed algorithm is of competitive performance in effectiveness and efficiency compared to some other basic or modified meta-heuristics.


2017 ◽  
Vol 2017 ◽  
pp. 1-23 ◽  
Author(s):  
Yuting Lu ◽  
Yongquan Zhou ◽  
Xiuli Wu

In this paper, a novel hybrid lightning search algorithm-simplex method (LSA-SM) is proposed to solve the shortcomings of lightning search algorithm (LSA) premature convergence and low computational accuracy and it is applied to function optimization and constrained engineering design optimization problems. The improvement adds two major optimization strategies. Simplex method (SM) iteratively optimizes the current worst step leaders to avoid the population searching at the edge, thus improving the convergence accuracy and rate of the algorithm. Elite opposition-based learning (EOBL) increases the diversity of population to avoid the algorithm falling into local optimum. LSA-SM is tested by 18 benchmark functions and five constrained engineering design problems. The results show that LSA-SM has higher computational accuracy, faster convergence rate, and stronger stability than other algorithms and can effectively solve the problem of constrained nonlinear optimization in reality.


2011 ◽  
Vol 41 ◽  
pp. 407-444 ◽  
Author(s):  
A. György ◽  
L. Kocsis

Local search algorithms applied to optimization problems often suffer from getting trapped in a local optimum. The common solution for this deficiency is to restart the algorithm when no progress is observed. Alternatively, one can start multiple instances of a local search algorithm, and allocate computational resources (in particular, processing time) to the instances depending on their behavior. Hence, a multi-start strategy has to decide (dynamically) when to allocate additional resources to a particular instance and when to start new instances. In this paper we propose multi-start strategies motivated by works on multi-armed bandit problems and Lipschitz optimization with an unknown constant. The strategies continuously estimate the potential performance of each algorithm instance by supposing a convergence rate of the local search algorithm up to an unknown constant, and in every phase allocate resources to those instances that could converge to the optimum for a particular range of the constant. Asymptotic bounds are given on the performance of the strategies. In particular, we prove that at most a quadratic increase in the number of times the target function is evaluated is needed to achieve the performance of a local search algorithm started from the attraction region of the optimum. Experiments are provided using SPSA (Simultaneous Perturbation Stochastic Approximation) and k-means as local search algorithms, and the results indicate that the proposed strategies work well in practice, and, in all cases studied, need only logarithmically more evaluations of the target function as opposed to the theoretically suggested quadratic increase.


2018 ◽  
Vol 232 ◽  
pp. 03015
Author(s):  
Changjun Wen ◽  
Changlian Liu ◽  
Heng Zhang ◽  
Hongliang Wang

The particle swarm optimization (PSO) is a widely used tool for solving optimization problems in the field of engineering technology. However, PSO is likely to fall into local optimum, which has the disadvantages of slow convergence speed and low convergence precision. In view of the above shortcomings, a particle swarm optimization with Gaussian disturbance is proposed. With introducing the Gaussian disturbance in the self-cognition part and social cognition part of the algorithm, this method can improve the convergence speed and precision of the algorithm, which can also improve the ability of the algorithm to escape the local optimal solution. The algorithm is simulated by Griewank function after the several evolutionary modes of GDPSO algorithm are analyzed. The experimental results show that the convergence speed and the optimization precision of the GDPSO is better than that of PSO.


Algorithms ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 225
Author(s):  
Chong Zhou ◽  
Shengjie Li ◽  
Yuhe Zhang ◽  
Zhikun Chen ◽  
Cuijun Zhang

Backtracking Search Algorithm (BSA) is a younger population-based evolutionary algorithm and widely researched. Due to the introduction of historical population and no guidance toward to the best individual, BSA does not adequately use the information in the current population, which leads to a slow convergence speed and poor exploitation ability of BSA. To address these drawbacks, a novel backtracking search algorithm with reflection mutation based on sine cosine is proposed, named RSCBSA. The best individual found so far is employed to improve convergence speed, while sine and cosine math models are introduced to enhance population diversity. To sufficiently use the information in the historical population and current population, four individuals are selected from the historical or current population randomly to construct an unit simplex, and the center of the unit simplex can enhance exploitation ability of RSCBSA. Comprehensive experimental results and analyses show that RSCBSA is competitive enough with other state-of-the-art meta-heuristic algorithms.


Sign in / Sign up

Export Citation Format

Share Document