scholarly journals Fuzzy Quality Evaluation Model Constructed by Process Quality Index

2021 ◽  
Vol 11 (23) ◽  
pp. 11262
Author(s):  
Chun-Min Yu ◽  
Chih-Feng Wu ◽  
Kuen-Suan Chen ◽  
Chang-Hsien Hsu

Many studies have pointed out that the-smaller-the-better quality characteristics (QC) can be found in many important components of machine tools, such as roundness, verticality, and surface roughness of axes, bearings, and gears. This paper applied a process quality index that is capable of measuring the level of process quality. Meanwhile, a model of fuzzy quality evaluation was developed by the process quality index as having a one-to-one mathematical relationship with the process yield. In addition to assessing the level of process quality, the model can also be employed as a basis for determining whether to improve the process quality at the same time. This model can cope with the problem of small sample sizes arising from the need for enterprises’ quick response, which means that the accuracy of the evaluation can still be maintained in the case of small sample sizes. Moreover, this fuzzy quality evaluation model is built on the confidence interval, enabling a decline in the probability of misjudgment incurred by sampling errors.

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2513
Author(s):  
Kuen-Suan Chen ◽  
Tsun-Hung Huang

Numerous key components of tool machines possess critical smaller-the-better-type quality characteristics. Under the assumption of normality, a one-to-one mathematical relationship exists between the process quality index and the process yield. Therefore, this paper utilized the index to produce a quality fuzzy evaluation model aimed at the small-the-better-type quality characteristics and adopted the model as a decision-making basis for improvement. First, we derived the 100(1 −α)% confidence region of the process mean and process standard deviation. Next, we obtained the 100(1 −α)% confidence interval of the quality index using the mathematical programming method. Furthermore, a one-tailed fuzzy testing method based on this confidence interval was proposed, aiming to assess the process quality. In addition, enterprises’ pursuit of rapid response often results in small sample sizes. Since the evaluation model is built on the basis of the confidence interval, not only can it diminish the risk of wrong judgment due to sampling errors, but it also can enhance the accuracy of evaluations for small sample sizes.


2021 ◽  
Vol 11 (21) ◽  
pp. 10182
Author(s):  
Chiao-Tzu Huang ◽  
Kuei-Kuei Lai

Process Capability Indices (PCIs) are not only a good communication tools between sales departments and customers but also convenient tools for internal engineers to evaluate and analyze process capabilities of products. Many statisticians and process engineers are dedicated to research on process capability indices, among which the Taguchi cost loss index can reflect both the process yield and process cost loss at the same time. Therefore, in this study the Taguchi cost loss index was used to propose a novel process quality evaluation model. After the process was stabilized, a process capability evaluation was carried out. This study used Boole’s inequality and DeMorgan’s theorem to derive the (1 – α) ×100% confidence region of (δ,γ2) based on control chart data. The study adopted the mathematical programming method to find the (1 – α) ×100% confidence interval of the Taguchi cost loss index then employed a (1 – α) ×100% confidence interval to perform statistical testing and to determine whether the process needed improvement.


2018 ◽  
Author(s):  
Christopher Chabris ◽  
Patrick Ryan Heck ◽  
Jaclyn Mandart ◽  
Daniel Jacob Benjamin ◽  
Daniel J. Simons

Williams and Bargh (2008) reported that holding a hot cup of coffee caused participants to judge a person’s personality as warmer, and that holding a therapeutic heat pad caused participants to choose rewards for other people rather than for themselves. These experiments featured large effects (r = .28 and .31), small sample sizes (41 and 53 participants), and barely statistically significant results. We attempted to replicate both experiments in field settings with more than triple the sample sizes (128 and 177) and double-blind procedures, but found near-zero effects (r = –.03 and .02). In both cases, Bayesian analyses suggest there is substantially more evidence for the null hypothesis of no effect than for the original physical warmth priming hypothesis.


2021 ◽  
Vol 11 (10) ◽  
pp. 4344
Author(s):  
Kuen-Suan Chen ◽  
Shui-Chuan Chen ◽  
Ting-Hsin Hsu ◽  
Min-Yi Lin ◽  
Chih-Feng Wu

The Taguchi capability index, which reflects the expected loss and the yield of a process, is a useful index for evaluating the quality of a process. Several scholars have proposed a process improvement capability index based on the expected value of the Taguchi loss function as well as the corresponding cost of process improvement. There have been a number of studies using the Taguchi capability index to develop suppliers’ process quality evaluation models, whereas models for evaluating suppliers’ process improvement potential have been relatively lacking. Thus, this study applies the process improvement capability index to develop an evaluation model of the supplier’s process improvement capability, which can be provided to the industry for application. Besides, owing to the current need to respond quickly, coupled with cost considerations and the limits of technical capabilities, the sample size for sampling testing is usually not large. Consequently, the evaluation model of the process improvement capability developed in this study adopts a fuzzy testing method based on the confidence interval. This method reduces the risk of misjudgment due to sampling errors and improves the testing accuracy because it can incorporate experts and their accumulated experiences.


Sign in / Sign up

Export Citation Format

Share Document