Biosynthesis of Zinc Oxide Nanoparticles Using Leaf Extract of Prosopis juliflora as Potential Photocatalyst for the Treatment of Paper Mill Effluent

2021 ◽  
Vol 11 (23) ◽  
pp. 11394
Author(s):  
Ahmed M. Abbas ◽  
Sabah A. Hammad ◽  
Heba Sallam ◽  
Lamiaa Mahfouz ◽  
Mohamed K. Ahmed ◽  
...  

This paper reports on the manufacture of ZnO nanoparticles (ZnO NPs) from Prosopis juliflora leaf extracts. Various methods of characterization were used, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and transmission electron microscope TEM. ZnO NPs has a hexagonal wurtzite structure with a preferred orientation of 101 planes, according to XRD. The functional groups found in ZnO NPs isolated from leaves are responsible for the FT-IR peaks that correspond to them. The morphology of the produced nanoparticles is a sphere-like form, as shown in the SEM pictures. TEM examination revealed ZnO NPs with a size of 50–55 nm. These ZnO NPs were used to remediate pollutants in paper mill effluents, and they were able to remove 86% of the organic pollutants from the sample at 0.05 mg/L dose and reduce 89% of the organic pollutants during a 5-h reflex time. Meanwhile, for the photocatalysis of paper mill effluents, it has been noted that COD was removed by 74.30%, 63.23%, and 57.96% for the first, second, and third cycles, respectively.

2014 ◽  
Vol 6 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Pushpendra Pal Singh ◽  
A. K. Chopra

Biosorption processes have the potential to decrease environmental hazards through their factors such as initial metal ion concentration, temperature, pH and biomass concentration in the solution. In the present study biosorption process was performed using the strains of Bacillus spp. PPS 03 (KF710041) and Bacillus subtilis PPS 04 (KF710042) isolated from sediment core of Paper mill effluent (PME) for the removal of Zn2+and Pb2+ in an indigenously designed Bench-top Bioreactor. The temperature, initial pH, biomass and incubation period of PME for Zn2+ and Pb2+ reduction was standardized. The strains exhibited significant reduction in Zn2+ and Pb2+ of PME to the extent of 73.29% and 85.64% with PPS 03 and 78.15% and 87.57% respectively with PPS 04 after 120 hrs of aerobic treatment. The reduction in the metals occurred from first day of the treatment, but the maximum reduction in these metals was observed after 120 hrs. at pH (7.0±0.2), temperature (35±1.0°C) and biomass (5% v/ v) of the bacterial strains. The removal of metals with strain PPS 04 was more in comparison to the strain PPS 03. The Freundlich isotherms on the data showed that it was linearly fitted for Zn2+and Pb2+. The values of correlation coefficient (R2) of Freundlich isotherms were greater than 0.812 for Pb2+ and Zn2+. The kinetic study for the rate of removal of Pb2+ and Zn2+ by both species was found to best fit a Pseudo first order reaction. The rate constant was found to be inversely proportional to the concentration of parameters. Thus, the microbial strains were found efficient for the biosorption/removal of Pb2+ and Zn2+.


2011 ◽  
Vol 63 (3) ◽  
pp. 491-501 ◽  
Author(s):  
R. Dewi ◽  
J. A. Van Leeuwen ◽  
A. Everson ◽  
S. C. Nothrop ◽  
C. W. K. Chow

The use of coagulation and flocculation for tertiary treatment of pulp and paper mill effluent was investigated, where the evaluation was based on the removal of nitrogen (N), phosphorus (P) and BOD from post-coagulated wastewater. The study was undertaken on laboratory scale aerobic stabilisation basins (ASB). Two post coagulated (alum) wastewaters were studied, where the BOD:N:P ratios were 100:1.3:0.06 and 100:1.3:0.3. These wastewaters were treated in two identical concurrent simulations (A & B). The influent ratio for ‘A’ was selected representing the composition of actual coagulated Pinus radiata sulfite pulp effluent mixed with paper mill effluent. The input composition for ‘B’ represented a typical P concentration found in existing pulp and paper mill effluents. Unmodified sludge collected from a mill-pond was added at 4% v/v to each simulation replicating the treatment conditions at full-scale. Similar high percentage removals of BOD and COD occurred after 28 days (two HRTs) which were 94 and 67% respectively for ‘A’, and 98 and 70% respectively for ‘B’, where both remained at steady state during the third HRT. A statistical analysis of the data revealed that there was no significant difference in the sample variance of the BOD and COD results.


2018 ◽  
Vol 10 (1) ◽  
pp. 367-374 ◽  
Author(s):  
Sangeeta Madan ◽  
Preeti Sachan ◽  
Utkarsh Singh

At present, a large amount of water required for paper production and various chemicals has been identified in effluents, which is produced at different steps of paper making in paper mills. The pulp and paper industry is typically related to pollution difficulties related to high biological oxygen demand (BOD), chemical oxygen demand (COD), colour, suspended solids, lignin and chlorinated compounds. Several studies have been made on eliminate these difficulties of pulp and paper effluents, the problem still continues. Although the physical and chemical methods are on the track of treatment, they are not on par with biological treatment because of cost ineffectiveness and residual effects. The biological treatment is known to be effective in reducing the organic load and toxic effects of paper mill effluents. Some microorganisms including bacteria and fungi have been involved in degrading the chemicals present in pulp and paper mill effluent. This article is an overview of the attempts made by several researchers worldwide to use biotechnological methods for degradation of the toxic compounds present in pulp and paper mill effluents by using fungi, bacteria, algae and enzymes. The current study clearly shows that application of native dominant bacterial and fungal isolates may be used forthe treatment of large pulp and paper mills effluents.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 19-31 ◽  
Author(s):  
J. Folke

The Ministers' Declaration from the 2nd North Sea Conference recommended a goal to be set to diminish the discharge of hazardous substances via rivers by 50% over the next 10 years, e.g. to diminish the discharge of persistent halogenated compounds from pulp and paper mill effluents. The Paris Convention adopted this recommendation later. Based on a study conducted for the EEC Commission, we have arrived at the following conclusions to fulfil this goal. For historic reasons the regulation of the pulp and paper industry includes some parameters which may not be the most appropriate ones, e.g. BOD5 and AOX. To regulate the bleached pulp mills by AOX/TOC1 is not recommendable. PCDD/PDDFs are very difficult to regulate at present. Regulation of polychlorinated phenolics (PoCPs) in the effluent may prove to be a valid indirect measure of TCDD-equivalents, but this has yet to be proven. To ensure sufficient removal of hazardous compounds, we recommend that standards for TSS be stringent, as the major fraction of hazardous compounds is associated with suspended solids (including PoCPs and PCDD/PCDFs). Effluent control should be based on pH, COD (Chemical Oxygen Demand using dichromic acid), TSS (total suspended solids) and PoCPs. At present there are not sufficient data available to establish a regulation based on these parameters. So, further data should be obtained.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 388 ◽  
Author(s):  
Samy M. El-Megharbel ◽  
Mohammed Alsawat ◽  
Fawziah A. Al-Salmi ◽  
Reham Z. Hamza

A newly synthesized zinc (II) oxide nanoparticle (ZnO-NPs) has been used as a disinfectant Nano-spray for the emerging corona virus (SARS-CoV-2). The synthesized obtained nanomaterial of (ZnO) was fully chemically characterized by using different spectroscopic analysis (FT-IR, UV and XRD) and surface analysis techniques. ZnO-Nps surface morphology and chemical purity has been investigated by transmission electron microscope (TEM), high resolution transmission electron microscope (HR-TEM), scanning electron microscopy (SEM) as well as energy dispersive X-ray analysis (EDX), Additionally Zeta potential and Zeta size distribution were measured and evaluated to confirm its nano-range scale. The synthesized Zno-NPs have been tested using 10% DMSO and ddH2O for estimation of antiviral activity against (SARS-CoV-2) by using cytotoxicity assay (CC50) and inhibitory concentration (IC50). The results revealed that (Zno-NPs) has high anti-SARS-CoV-2 activity at cytotoxic concentrations in vitro with non-significant selectivity index (CC50/IC50 ≤ 1). The current study results demonstrated the (ZnO-NPs) has potent antiviral activity at low concentration (IC50 = 526 ng/mL) but with some cytotoxic effect to the cell host by (CC50 = 292.2 ng/mL). We recommend using of (ZnO-NPs) as potent disinfectant against (SARS-Cov-2), but there are slight side effects on the cellular host, so we recommend more prospective studies on complexation of other compounds with (ZnO-NPs) in different concentrations to reduce its cellular toxicity and elevate its antiviral activity against SARS-CoV-2 activities.


2015 ◽  
Vol 62 (5) ◽  
pp. 327-333 ◽  
Author(s):  
Chhotu Ram ◽  
Chhaya Sharma ◽  
A K Singh

Purpose – This paper aims to report on corrosivity of secondary-stage paper mill effluent and corrosion performance of stainless steels. Design/methodology/approach – For this purpose, immersion test and electrochemical polarization tests were conducted in mill and synthetic effluent to evaluate the uniform and localized corrosion. Findings – Corrosivity of mill effluent has been compared with synthetic and primary-stage effluent of the same mill. It is observed that anions present in them, viz. SO4−, PO34−, NO2− and NO3−, impart inhibition, whereas Cl− and chlorophenols enhance the corrosivity of the effluent. The overall effect of various components was reduction in corrosivity of secondary mill effluent. Originality/value – These observations can be useful for material selection and helpful in corrosion mitigation in paper mill effluent treatment plants.


Sign in / Sign up

Export Citation Format

Share Document