scholarly journals Effect of Selective Lateral Chromium Doping by RF Magnetron Sputtering on the Structural, and Opto-Electrical Properties of Nickel Oxide

2021 ◽  
Vol 11 (23) ◽  
pp. 11546
Author(s):  
Mohammad Shah Jamal ◽  
Khan Sobayel ◽  
Halina Misran ◽  
Taskina Nasrin ◽  
Khaled Althubeiti ◽  
...  

In this study, chromium (Cr)-doped nickel oxide (NiO) thin films were deposited by employing selective lateral doping of Cr in NiO by radio-frequency magnetron sputtering at different doping times ranging from 0 s (undoped) to 80 s. The structural, optical, and electrical properties of the resulting Cr-doped NiO thin films were investigated. Structural investigation from XRD patterns indicated that the grown Cr-doped NiO layer crystallized in a cubic phase. Broadening of the diffraction peak with increasing doping time from 0 s to 80 s led to a reduction in the crystallite size that varied from 23.52 nm to 14.65 nm. Compared with the undoped NiO, the diffraction peak along the (200) plane shifted from left to right as a function of doping time. This result indicated that Cr+3 could easily enter the NiO lattice. Results from the Hall-effect study disclosed that electrical properties of Cr-doped NiO was highly dependent on doping time. The conductivity of NiO was increased with doping time, and the highest conductivity (8.73 × 10−2 Scm−1) was achieved at a doping time of 80 s. Finally, optical investigations revealed that as doping time increased, the optical bandgap of Cr-doped NiO films dropped from 3.43 eV to 3.28 eV. The highest Urbach energy at higher doping time indicated that crystallinity became poorer, and the degree of defects increased with increasing doping time.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Maw-Shung Lee ◽  
Sean Wu ◽  
Shih-Bin Jhong ◽  
Kai-Huang Chen ◽  
Kuan-Ting Liu

The (100)-oriented aluminum nitride (AlN) thin films were well deposited onto p-type Si substrate by radio frequency (RF) magnetron sputtering method. The optimal deposition parameters were the RF power of 350 W, chamber pressure of 9 mTorr, and nitrogen concentration of 50%. Regarding the physical properties, the microstructure of as-deposited (002)- and (100)-oriented AlN thin films were obtained and compared by XRD patterns and TEM images. For electrical properties analysis, we found that the memory windows of (100)-oriented AlN thin films are better than those of (002)-oriented thin films. Besides, the interface and interaction between the silicon and (100)-oriented AlN thin films was serious important problem. Finally, the current transport models of the as-deposited and annealed (100)-oriented AlN thin films were also discussed. From the results, we suggested and investigated that large memory window of the annealed (100)-oriented AlN thin films was induced by many dipoles and large electric field applied.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1183
Author(s):  
Peiyu Wang ◽  
Xin Wang ◽  
Fengyin Tan ◽  
Ronghua Zhang

Molybdenum disulfide (MoS2) thin films were deposited at different temperatures (150 °C, 225 °C, 300 °C, 375 °C, and 450 °C) on quartz glass substrates and silicon substrates using the RF magnetron sputtering method. The influence of deposition temperature on the structural, optical, electrical properties and deposition rate of the obtained thin films was investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), Raman, absorption and transmission spectroscopies, a resistivity-measuring instrument with the four-probe method, and a step profiler. It was found that the MoS2 thin films deposited at the temperatures of 150 °C, 225 °C, and 300 °C were of polycrystalline with a (101) preferred orientation. With increasing deposition temperatures from 150 °C to 300 °C, the crystallization quality of the MoS2 thin films was improved, the Raman vibrational modes were strengthened, the deposition rate decreased, and the optical transmission and bandgap increased. When the deposition temperature increased to above 375 °C, the molecular atoms were partially combined with oxygen atoms to form MoO3 thin film, which caused significant changes in the structural, optical, and electrical properties of the obtained thin films. Therefore, it was necessary to control the deposition temperature and reduce the contamination of oxygen atoms throughout the magnetron sputtering process.


2006 ◽  
Vol 957 ◽  
Author(s):  
Luis Manuel Angelats ◽  
Maharaj S Tomar ◽  
Rahul Singhal ◽  
Oscar P Perez ◽  
Hector J Jimenez ◽  
...  

ABSTRACTZn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O targets were used to grow thin films by rf magnetron sputtering. XRD patterns of the films showed a strong preferred orientation along c-axis. Zn0.90Co0.10O film showed a transmittance above 75% in the visible range, while the transmittance of the Zn0.85[Co0.50Fe0.50]0.15O film was about 45%; with three absorption peaks attributed to d-d transitions of tetrahedrally coordinated Co2+. The band gap values for Zn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O films were 2.95 and 2.70 eV respectively, which are slightly less than ZnO bulk. The Zn0.90Co0.10O film showed a relatively large positive magnetoresistance (MR) at the high magnetic field in the temperature range from 7 to 50 K, which reached 11.9% a 7K for the magnetoresistance. The lowest MR was found at 100 K. From M-H curve measured at room temperature shown a probable antiferromagnetic behavior, although was possible to observe little coercive field of 30 Oe and 40 Oe for Zn0.90Co0.10O and Zn0.85[Co0.50Fe0.50]0.15O films, respectively.


2010 ◽  
Vol 1245 ◽  
Author(s):  
Reza Anvari ◽  
Qi Cheng ◽  
Muhammad Lutful Hai ◽  
Truc Phan Bui ◽  
A. J. Syllaios ◽  
...  

AbstractThis paper presents the formation and the characterization of silicon germanium oxide (SixGeyO1-x-y) infrared sensitive material for uncooled microbolometers. RF magnetron sputtering was used to simultaneously deposit Si and Ge thin films in an Ar/O2 environment at room temperature. The effects of varying Si and O composition on the thin film's electrical properties which include temperature coefficient of resistance (TCR) and resistivity were investigated. The highest achieved TCR and the corresponding resistivity at room temperature were -5.41 %/K and 3.16×103 ohm cm using Si0.039Ge0.875O0.086 for films deposited at room temperature.


2021 ◽  
Author(s):  
Chunhu Zhao ◽  
Junfeng Liu ◽  
Yixin Guo ◽  
Yanlin Pan ◽  
Xiaobo Hu ◽  
...  

Abstract Aluminum doped ZnO thin films (AZO), which simultaneously transmit light and conduct electrical current, are widely applied in photovoltaic devices. To achieve high performance AZO thin films, the effects of RF magnetron sputtering conditions on the optical and electrical properties of the films has been explored. The optimized AZO thin films exhibit strong (002) orientated growth with hexagonal wurtzite structure. The minimum resistivity of 0.9Í10-3 Ω·cm, the highest carrier concentration of 2.8Í1020 cm-3, the best Hall mobility of 22.8 cm2·(V·s)-1 and average transmittance above 85% can be achieved at the optimum deposition condition of 0.2 Pa, 120 W and 200 °C. Considering the single parabolic band model, the bandgap shift by carrier concentration of the films can be attributed to the Burstein-Moss effect. The results indicate that RF magnetron sputtered AZO thin films are promising for solar cell applications relying on front contact layers.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2146 ◽  
Author(s):  
Chayma Abed ◽  
Susana Fernández ◽  
Selma Aouida ◽  
Habib Elhouichet ◽  
Fernando Priego ◽  
...  

In this study, high transparent thin films were prepared by radio frequency (RF) magnetron sputtering from a conventional solid state target based on ZnO:MgO:Al2O3 (10:2 wt %) material. The films were deposited on glass and silicon substrates at the different working pressures of 0.21, 0.61, 0.83 and 1 Pa, 300 °C and 250 W of power. X-ray diffraction patterns (XRD), atomic force microscopy (AFM), UV-vis absorption and Hall effect measurements were used to evaluate the structural, optical, morphological and electrical properties of thin films as a function of the working pressure. The optical properties of the films, such as the refractive index, the extinction coefficient and the band gap energy were systematically studied. The optical band gap of thin films was estimated from the calculated absorption coefficient. That parameter, ranged from 3.921 to 3.655 eV, was hardly influenced by the working pressure. On the other hand, the lowest resistivity of 8.8 × 10−2 Ω cm−1 was achieved by the sample deposited at the lowest working pressure of 0.21 Pa. This film exhibited the best optoelectronic properties. All these data revealed that the prepared thin layers would offer a good capability to be used in photovoltaic applications.


Sign in / Sign up

Export Citation Format

Share Document