scholarly journals Quantitative Geochemical Prediction from Spectral Measurements and Its Application to Spatially Dispersed Spectral Data

2021 ◽  
Vol 12 (1) ◽  
pp. 282
Author(s):  
Andrew Rodger ◽  
Carsten Laukamp

The efficacy of predicting geochemical parameters with a 2-chain workflow using spectral data as the initial input is evaluated. Spectral measurements spanning the approximate 400–25000 nm spectral range are used to train a workflow consisting of a non-negative matrix function (NMF) step, for data reduction, and a random forest regression (RFR) to predict eight geochemical parameters. Approximately 175,000 spectra with their corresponding chemical analysis were available for training, testing and validation purposes. The samples and their spectral and chemical parameters represent 9399 drillcore. Of those, approximately 20,000 spectra and their accompanying analysis were used for training and 5000 for model validation. The remaining pairwise data (150,000 samples) were used for testing of the method. The data are distributed over two large spatial extents (980 km2 and 3025 km2, respectively) and allowed the proposed method to be tested against samples that are spatially distant from the initial training points. Global R2 scores and wt.% RMSE on the 150,000 validation samples are Fe (0.95/3.01), SiO2 (0.96/3.77), Al2O3 (0.92/1.27), TiO (0.68/0.13), CaO (0.89/0.41), MgO (0.87/0.35), K2O (0.65/0.21) and LOI (0.90/1.14), given as Parameter (R2/RMSE), and demonstrate that the proposed method is capable of predicting the eight parameters and is stable enough, in the environment tested, to extend beyond the training sets initial spatial location.

Author(s):  
Andrew Rodger ◽  
Carsten Laukamp

The efficacy of predicting geochemical parameters with a 2-chain workflow using spectral data as the initial input is evaluated. Spectral measurements spanning the approximate 400-25000nm spectral range are used to train a workflow consisting of a non-negative matrix function (NMF) step, for data reduction, and a random forest regression (RFR) to predict 8 geochemical parameters. Approximately 175000 spectra with their corresponding chemical analysis were available for training, testing and validation purposes. The samples and their spectral and chemical parameters represent 9399 drillcore. Of those, approximately 20000 spectra and their accompanying analysis were used for training and 5000 for model validation. The remaining pairwise data (150000 samples) were used for testing of the method. The data are distributed over 2 large spatial extents (980 km2 and 3025 km2 respectively) and allowed the proposed method to be tested against samples that are spatially distant from the initial training points. Global R2 scores and wt.% RMSE on the 150000 validation samples are Fe(0.95/3.01), SiO2(0.96/3.77), Al2O3(0.92/1.27), TiO(0.68/0.13), CaO(0.89/0.41), MgO(0.87/0.35), K2O(0.65/0.21) and LOI(0.90/1.14), given as Parameter(R2/RMSE), and demonstrate that the proposed method is capable of predicting the 8 parameters and is stable enough, in the environment tested, to extend beyond the training sets initial spatial location.


Author(s):  
Andrew Rodger ◽  
Carsten Laukamp

The efficacy of predicting geochemical parameters with a 2-chain workflow using spectral data as the initial input is evaluated. Spectral measurements spanning the approximate 400-25000nm spectral range are used to train a workflow consisting of a non-negative matrix function (NMF) step, for data reduction, and a random forest regression (RFR) to predict 8 geochemical parameters. Approximately 175000 spectra with their corresponding chemical analysis were available for training, testing and validation purposes. The samples and their spectral and chemical parameters represent 9399 drillcore. Of those, approximately 20000 spectra and their accompanying analysis were used for training and 5000 for model validation. The remaining pairwise data (150000 samples) were used for testing of the method. The data are distributed over 2 large spatial extents (980 km2 and 3025 km2 respectively) and allowed the proposed method to be tested against samples that are spatially distant from the initial training points. Global R2 scores and wt.% RMSE on the 150000 validation samples are Fe(0.95/3.01), SiO2(0.96/3.77), Al2O3(0.92/1.27), TiO(0.68/0.13), CaO(0.89/0.41), MgO(0.87/0.35), K2O(0.65/0.21) and LOI(0.90/1.14), given as Parameter(R2/RMSE), and demonstrate that the proposed method is capable of predicting the 8 parameters and is stable enough, in the environment tested, to extend beyond the training sets initial spatial location.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chinmay P. Swami ◽  
Nicholas Lenhard ◽  
Jiyeon Kang

AbstractProsthetic arms can significantly increase the upper limb function of individuals with upper limb loss, however despite the development of various multi-DoF prosthetic arms the rate of prosthesis abandonment is still high. One of the major challenges is to design a multi-DoF controller that has high precision, robustness, and intuitiveness for daily use. The present study demonstrates a novel framework for developing a controller leveraging machine learning algorithms and movement synergies to implement natural control of a 2-DoF prosthetic wrist for activities of daily living (ADL). The data was collected during ADL tasks of ten individuals with a wrist brace emulating the absence of wrist function. Using this data, the neural network classifies the movement and then random forest regression computes the desired velocity of the prosthetic wrist. The models were trained/tested with ADLs where their robustness was tested using cross-validation and holdout data sets. The proposed framework demonstrated high accuracy (F-1 score of 99% for the classifier and Pearson’s correlation of 0.98 for the regression). Additionally, the interpretable nature of random forest regression was used to verify the targeted movement synergies. The present work provides a novel and effective framework to develop an intuitive control for multi-DoF prosthetic devices.


Measurement ◽  
2020 ◽  
pp. 108899
Author(s):  
Madi Keramat-Jahromi ◽  
Seyed Saeid Mohtasebi ◽  
Hossein Mousazadeh ◽  
Mahdi Ghasemi-Varnamkhasri ◽  
Maryam Rahimi-Movassagh

2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


Sign in / Sign up

Export Citation Format

Share Document