scholarly journals SHAT: A Novel Asynchronous Training Algorithm That Provides Fast Model Convergence in Distributed Deep Learning

2021 ◽  
Vol 12 (1) ◽  
pp. 292
Author(s):  
Yunyong Ko ◽  
Sang-Wook Kim

The recent unprecedented success of deep learning (DL) in various fields is underlied by its use of large-scale data and models. Training a large-scale deep neural network (DNN) model with large-scale data, however, is time-consuming. To speed up the training of massive DNN models, data-parallel distributed training based on the parameter server (PS) has been widely applied. In general, a synchronous PS-based training suffers from the synchronization overhead, especially in heterogeneous environments. To reduce the synchronization overhead, asynchronous PS-based training employs the asynchronous communication between PS and workers so that PS processes the request of each worker independently without waiting. Despite the performance improvement of asynchronous training, however, it inevitably incurs the difference among the local models of workers, where such a difference among workers may cause slower model convergence. Fro addressing this problem, in this work, we propose a novel asynchronous PS-based training algorithm, SHAT that considers (1) the scale of distributed training and (2) the heterogeneity among workers for successfully reducing the difference among the local models of workers. The extensive empirical evaluation demonstrates that (1) the model trained by SHAT converges to the higher accuracy up to 5.22% than state-of-the-art algorithms, and (2) the model convergence of SHAT is robust under various heterogeneous environments.

2009 ◽  
Vol 28 (11) ◽  
pp. 2737-2740
Author(s):  
Xiao ZHANG ◽  
Shan WANG ◽  
Na LIAN

2016 ◽  
Author(s):  
John W. Williams ◽  
◽  
Simon Goring ◽  
Eric Grimm ◽  
Jason McLachlan

2008 ◽  
Vol 9 (10) ◽  
pp. 1373-1381 ◽  
Author(s):  
Ding-yin Xia ◽  
Fei Wu ◽  
Xu-qing Zhang ◽  
Yue-ting Zhuang

2021 ◽  
Vol 77 (2) ◽  
pp. 98-108
Author(s):  
R. M. Churchill ◽  
C. S. Chang ◽  
J. Choi ◽  
J. Wong ◽  
S. Klasky ◽  
...  

Author(s):  
Krzysztof Jurczuk ◽  
Marcin Czajkowski ◽  
Marek Kretowski

AbstractThis paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases, the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed what suggests that data size boundaries for evolutionary DT mining are fading.


Author(s):  
Xingyi Wang ◽  
Yu Li ◽  
Yiquan Chen ◽  
Shiwen Wang ◽  
Yin Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document