scholarly journals A Blockchain-Based Efficient, Secure and Anonymous Conditional Privacy-Preserving and Authentication Scheme for the Internet of Vehicles

2022 ◽  
Vol 12 (1) ◽  
pp. 476
Author(s):  
Kashif Naseer Qureshi ◽  
Luqman Shahzad ◽  
Abdelzahir Abdelmaboud ◽  
Taiseer Abdalla Elfadil Eisa ◽  
Bandar Alamri ◽  
...  

The rapid advancement in the area of the Internet of Vehicles (IoV) has provided numerous comforts to users due to its capability to support vehicles with wireless data communication. The exchange of information among vehicle nodes is critical due to the rapid and changing topologies, high mobility of nodes, and unpredictable network conditions. Finding a single trusted entity to store and distribute messages among vehicle nodes is also a challenging task. IoV is exposed to various security and privacy threats such as hijacking and unauthorized location tracking of smart vehicles. Traceability is an increasingly important aspect of vehicular communication to detect and penalize malicious nodes. Moreover, achieving both privacy and traceability can also be a challenging task. To address these challenges, this paper presents a blockchain-based efficient, secure, and anonymous conditional privacy-preserving and authentication mechanism for IoV networks. This solution is based on blockchain to allow vehicle nodes with mechanisms to become anonymous and take control of their data during the data communication and voting process. The proposed secure scheme provides conditional privacy to the users and the vehicles. To ensure anonymity, traceability, and unlinkability of data sharing among vehicles, we utilize Hyperledger Fabric to establish the blockchain. The proposed scheme fulfills the requirement to analyze different algorithms and schemes which are adopted for blockchain technology for a decentralized, secure, efficient, private, and traceable system. The proposed scheme examines and evaluates different consensus algorithms used in the blockchain and anonymization techniques to preserve privacy. This study also proposes a reputation-based voting system for Hyperledger Fabric to ensure a secure and reliable leader selection process in its consensus algorithm. The proposed scheme is evaluated with the existing state-of-the-art schemes and achieves better results.

2020 ◽  
Vol 21 (3) ◽  
pp. 425-440 ◽  
Author(s):  
Sumit Kumar ◽  
Jaspreet Singh

The new age of the Internet of Things (IoT) is motivating the advancement of traditional Vehicular Ad-Hoc Networks (VANETs) into the Internet of Vehicles (IoV). This paper is an overview of smart and secure communications to reduce traffic congestion using IoT based VANETs, known as IoV networks. Studies and observations made in this paper suggest that the practice of combining IoT and VANET for a secure combination has rarely practiced. IoV uses real-time data communication between vehicles to everything (V2X) using wireless communication devices based on fog/edge computing; therefore, it has considered as an application of Cyber-physical systems (CPS). Various modes of V2X communication with their connecting technologies also discussed. This paper delivers a detailed introduction to the Internet of Vehicles (IoV) with current applications, discusses the architecture of IoV based on currently existing communication technologies and routing protocols, presenting different issues in detail, provides several open research challenges and the trade-off between security and privacy in the area of IoV has reviewed. From the analysis of previous work in the IoV network, we concluded the utilization of artificial intelligence and machine learning concept is a beneficial step toward the future of IoV model.


Telecom ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 108-140
Author(s):  
Paulo Álvares ◽  
Lion Silva ◽  
Naercio Magaia

It had been predicted that by 2020, nearly 26 billion devices would be connected to the Internet, with a big percentage being vehicles. The Internet of Vehicles (IoVa) is a concept that refers to the connection and cooperation of smart vehicles and devices in a network through the generation, transmission, and processing of data that aims at improving traffic congestion, travel time, and comfort, all the while reducing pollution and accidents. However, this transmission of sensitive data (e.g., location) needs to occur with defined security properties to safeguard vehicles and their drivers since attackers could use this data. Blockchain is a fairly recent technology that guarantees trust between nodes through cryptography mechanisms and consensus protocols in distributed, untrustful environments, like IoV networks. Much research has been done in implementing the former in the latter to impressive results, as Blockchain can cover and offer solutions to many IoV problems. However, these implementations have to deal with the challenge of IoV node’s resource constraints since they do not suffice for the computational and energy requirements of traditional Blockchain systems, which is one of the biggest limitations of Blockchain implementations in IoV. Finally, these two technologies can be used to build the foundations for smart cities, enabling new application models and better results for end-users.


2021 ◽  
Vol 11 (21) ◽  
pp. 9792
Author(s):  
Konstantinos Kaltakis ◽  
Panagiota Polyzi ◽  
George Drosatos ◽  
Konstantinos Rantos

Blockchain, a promising technology that has matured and nowadays is widely used in many fields, such as supply chain management, smart grids, agriculture and logistics, has also been proposed for the Internet of Vehicles (IoV) ecosystem to enhance the protection of the data that roadside units and vehicles exchange. Blockchain technology can inherently guarantee the availability, integrity and immutability of data stored in IoV, yet it cannot protect privacy and data confidentiality on its own. As such, solutions that utilise this technology have to consider the adoption of privacy-preserving schemes to address users’ privacy concerns. This paper provides a literature review of proposed solutions that provide different vehicular services using blockchain technology while preserving privacy. In this context, it analyses existing solutions’ main characteristics and properties to provide a comprehensive and critical overview and identifies their contribution in the field. Moreover, it provides suggestions to researchers for future work in the field of privacy-preserving blockchain-enabled solutions for vehicular networks.


2016 ◽  
Vol 102 ◽  
pp. 83-95 ◽  
Author(s):  
Lukas Malina ◽  
Jan Hajny ◽  
Radek Fujdiak ◽  
Jiri Hosek

2021 ◽  
Vol 13 (1) ◽  
pp. 400
Author(s):  
A. F. M. Suaib Akhter ◽  
Mohiuddin Ahmed ◽  
A. F. M. Shahen Shah ◽  
Adnan Anwar ◽  
Ahmet Zengin

Existing research shows that Cluster-based Medium Access Control (CB-MAC) protocols perform well in controlling and managing Vehicular Ad hoc Network (VANET), but requires ensuring improved security and privacy preserving authentication mechanism. To this end, we propose a multi-level blockchain-based privacy-preserving authentication protocol. The paper thoroughly explains the formation of the authentication centers, vehicles registration, and key generation processes. In the proposed architecture, a global authentication center (GAC) is responsible for storing all vehicle information, while Local Authentication Center (LAC) maintains a blockchain to enable quick handover between internal clusters of vehicle. We also propose a modified control packet format of IEEE 802.11 standards to remove the shortcomings of the traditional MAC protocols. Moreover, cluster formation, membership and cluster-head selection, and merging and leaving processes are implemented while considering the safety and non-safety message transmission to increase the performance. All blockchain communication is performed using high speed 5G internet while encrypted information is transmitted while using the RSA-1024 digital signature algorithm for improved security, integrity, and confidentiality. Our proof-of-concept implements the authentication schema while considering multiple virtual machines. With detailed experiments, we show that the proposed method is more efficient in terms of time and storage when compared to the existing methods. Besides, numerical analysis shows that the proposed transmission protocols outperform traditional MAC and benchmark methods in terms of throughput, delay, and packet dropping rate.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ming Mao ◽  
Peng Yi ◽  
Tao Hu ◽  
Zhen Zhang ◽  
Xiangyu Lu ◽  
...  

One of the principal missions of security in the Internet of Vehicles (IoV) is to establish credible social relationships. The trust management system has been proved to be an effective security solution in a connected vehicle environment. The use of trust management can play a significant role in achieving reliable data collection and dissemination and enhanced user security in the Internet of Vehicles. However, due to a large number of vehicles, the limited computing power of individuals, and the highly dynamic nature of the network, a universal and flexible architecture is required to realize the trust of vehicles in a dynamic environment. The existing solutions for trust management cannot be directly applied to the Internet of Vehicles. To ensure the safe transmission of data between vehicles and overcome the problems of high communication delay and low recognition rate of malicious nodes in the current trust management scheme, an efficient flow forwarding mechanism of the RSU close to the controller in the Software-Defined Vehicular Network is used to establish a hierarchical hybrid trust management architecture. This method evaluates the dynamic trust change of vehicle behavior based on the trust between vehicles and the auxiliary trust management of the infrastructure to the vehicle, combined with static and dynamic information and other indicators. The proposed trust management scheme is superior to the comparative schemes in resisting simple attacks, selective misbehavior attacks, and time-dependent attacks under the condition of ensuring superior real-time performance. Its overall accuracy is higher than that of the baseline scheme.


2021 ◽  
pp. 102680
Author(s):  
Ugur Ilker Atmaca ◽  
Carsten Maple ◽  
Gregory Epiphaniou ◽  
Mehrdad Dianati

Sign in / Sign up

Export Citation Format

Share Document