scholarly journals Securing SCADA Energy Management System under DDos Attacks Using Token Verification Approach

2022 ◽  
Vol 12 (1) ◽  
pp. 530
Author(s):  
Yu-Sheng Yang ◽  
Shih-Hsiung Lee ◽  
Wei-Che Chen ◽  
Chu-Sing Yang ◽  
Yuen-Min Huang ◽  
...  

The advanced connection requirements of industrial automation and control systems have sparked a new revolution in the Industrial Internet of Things (IIoT), and the Supervisory Control and Data Acquisition (SCADA) network has evolved into an open and highly interconnected network. In addition, the equipment of industrial electronic devices has experienced complete systemic integration by connecting with the SCADA network, and due to the control and monitoring advantages of SCADA, the interconnectivity and working efficiency among systems have been tremendously improved. However, it is inevitable that the SCADA system cannot be separated from the public network, which indicates that there are concerns over cyber-attacks and cyber-threats, as well as information security breaches, in the SCADA network system. According to this context, this paper proposes a module based on the token authentication service to deter attackers from performing distributed denial-of-service (DDoS) attacks. Moreover, a simulated experiment has been conducted in an energy management system in the actual field, and the experimental results have suggested that the security defense architecture proposed by this paper can effectively improve security and is compatible with real field systems.

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 68 ◽  
Author(s):  
Taha Selim Ustun ◽  
S. M. Suhail Hussain

As the number of active components increase, distribution networks become harder to control. Microgrids are proposed to divide large networks into smaller, more manageable portions. The benefits of using microgrids are multiple; the cost of installation is significantly smaller and renewable energy-based generators can be utilized at a small scale. Due to the intermittent and time dependent nature of renewables, to ensure reliable and continuous supply of energy, it is imperative to create a system that has several generators and storage systems. The way to achieve this is through an energy management system (EMS) that can coordinate all these generators with a storage system. Prior to on-site installation, validation studies should be performed on such controllers. This work presents a standardized communication modeling based on IEC 61850 that is developed for a commercial microgrid controller. Using commercial software, different terminals are set up as intelligent electronic devices (IEDs) and the operation of the EMS is emulated with proper message exchanges. Considering that these messages transmit sensitive information, such as financial transactions or dispatch instructions, securing them against cyber-attacks is very important. Therefore; message integrity, node authentication, and confidentiality features are also implemented according to IEC 62351 guidelines. Real-message exchanges are captured with and without these security features to validate secure operation of standard communication solution.


2019 ◽  
Vol 260 ◽  
pp. 01001 ◽  
Author(s):  
Seung Min Kim ◽  
Tacklim Lee ◽  
Seunghwan Kim ◽  
Lee Won Park ◽  
Sehyun Park

The Smart Grid has emerged to address the shortcomings of one-way existing grid systems, and is the next generation power grid infrastructure that applies smart ICT (Information Communication Technology) to existing grid. The Smart Grid is expected to greatly improve the efficiency and reliability of future power systems with the demand for renewable energy resources. However, because major power facilities are interconnected through communication networks, Smart Grid’s cyber security is becoming an important issue. Cyber-attacks by malicious intruders can lead to serious incidents such as massive outages and the destruction of power network infrastructure, since the cyber-attacks can damage energy data, starting with personal information leakage from grid members. Therefore, as a solution to this issue we will suggest a secure smart energy management system based on the blockchain. The blockchain is a distributed data processing technology in which all users participating in the network distribute and store data. Applying blockchain technology to the Smart Grid will enable more secure management of energy data, and furthermore, it will contribute to the development of the future smart energy industry in the future.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2685
Author(s):  
Yu-Sheng Yang ◽  
Shih-Hsiung Lee ◽  
Wei-Che Chen ◽  
Chu-Sing Yang ◽  
Yuen-Min Huang ◽  
...  

The vigorous development of the Industrial Internet of Things brings the advanced connection function of the new generation of industrial automation and control systems. The Supervisory Control and Data Acquisition (SCADA) network is converted into an open and highly interconnected network, where the equipment connections between industrial electronic devices are integrated with a SCADA system through a Modbus protocol. As SCADA and Modbus are easily used for control and monitoring, the interconnection and operational efficiency between systems are highly improved; however, such connectivity inevitably exposes the system to the open network environment. There are many network security threats and vulnerabilities in a SCADA network system. Especially in the era of the Industrial Internet of Things, any security vulnerability of an industrial system may cause serious property losses. Therefore, this paper proposes an encryption and verification mechanism based on the trusted token authentication service and Transport Layer Security (TLS) protocol to prevent attackers from physical attacks. Experimentally, this paper deployed and verified the system in an actual field of energy management system. According to the experimental results, the security defense architecture proposed in this paper can effectively improve security and is compatible with the actual field system.


2012 ◽  
Vol 132 (10) ◽  
pp. 695-697 ◽  
Author(s):  
Hideki HAYASHI ◽  
Yukitoki TSUKAMOTO ◽  
Shouji MOCHIZUKI

2012 ◽  
Vol 132 (10) ◽  
pp. 692-694 ◽  
Author(s):  
Yoshihiro OGITA ◽  
Yutaka IINO ◽  
Hideki HAYASHI

Sign in / Sign up

Export Citation Format

Share Document