scholarly journals Battery Energy Storage Participation in Automatic Generation Control of Island Systems, Coordinated with State of Charge Regulation

2022 ◽  
Vol 12 (2) ◽  
pp. 596
Author(s):  
Apostolos G. Papakonstantinou ◽  
Stavros A. Papathanassiou

Efficient storage participation in the secondary frequency regulation of island systems is a prerequisite towards their complete decarbonization. However, energy reserve limitations of storage resources pose challenges to their integration in centralized automatic generation control (AGC). This paper presents a frequency control method, in which battery energy storage systems (BESSs) participate in automatic frequency restoration reserve (aFRR) provision, through their integration in the AGC of an island system. A local state of charge (SOC) controller ensures safe operation of the BESS in case of disturbances, without jeopardizing system security when available energy reserves are diminishing. The aFRR participation factors of regulating units are altered when the storage systems approach their SOC limits, re-allocating their reserves to other load-following units. Restoration of BESS energy reserves is achieved by integrating SOC regulation in the real-time economic dispatch of the system, formulated as a mixed-integer linear programming problem and solved every few minutes to determine the base points of the AGC units. A small autonomous power system, comprising conventional units, renewable energy sources and a BESS, is used as a study case to evaluate the performance of the proposed method, which is compared with alternative approaches to secondary regulation with BESS participation.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7231
Author(s):  
Cristobal Morales ◽  
Augusto Lismayes ◽  
Hector Chavez ◽  
Harold Chamorro ◽  
Lorenzo Reyes-Chamorro

It is normally accepted that Battery Energy Storage Systems improve frequency regulation by providing fast response to the Automatic Generation Control. However, currently available control strategies may lead to early Energy Storage Systems aging given that Automatic Generation Control requirements are increasing due to zero carbon power generation integration. In this sense, it is important to analyze the aging phenomena in order to assess the technical–economical usefulness of Battery Energy Storage Systems towards zero carbon power systems. In order to avoid early aging, various proposals on aging-reducing algorithms can be found; however, it is unclear if those aging-reducing algorithms affect the performance of Battery Energy Storage Systems. It is also unclear whether those effects must be internalized to properly dimension the capacity of Battery Energy Storage Systems to both comply with performance standards and to prevent early aging. Thus, this paper estimates the storage capacity of a Battery Energy Storage Systems to comply with Automatic Generation Control performance standard under aging-reducing operating algorithms by dynamics simulations of a reduced-order, empirically-validated model of the Electric Reliability Council of Texas. The results show the relationship between the required performance of Automatic Generation Control and Battery Energy Storage System capacity, considering a 1-year simulation of Automatic Generation Control dynamics. It can be concluded that the compliance with performance standards is strongly related to the storage capacity, regardless of how fast the device can inject or withdraw power from the grid. Previous results in the state-of-the-art overlook the quantification of this relationship between compliance with performance standards and storage capacity.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2289 ◽  
Author(s):  
Oscar Danilo Montoya ◽  
Walter Gil-González ◽  
Edwin Rivas-Trujillo

This paper deals with the problem of optimal location and reallocation of battery energy storage systems (BESS) in direct current (dc) microgrids with constant power loads. The optimization model that represents this problem is formulated with two objective functions. The first model corresponds to the minimization of the total daily cost of buying energy in the spot market by conventional generators and the second to the minimization of the costs of the daily energy losses in all branches of the network. Both the models are constrained by classical nonlinear power flow equations, distributed generation capabilities, and voltage regulation, among others. These formulations generate a nonlinear mixed-integer programming (MINLP) model that requires special methods to be solved. A dc microgrid composed of 21-nodes with existing BESS is used for validating the proposed mathematical formula. This system allows to identify the optimal location or reallocation points for these batteries by improving the daily operative costs regarding the base cases. All the simulations are conducted via the general algebraic modeling system, widely known as the General Algebraic Modeling System (GAMS).


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1614 ◽  
Author(s):  
Jae-Won Chang ◽  
Gyu-Sub Lee ◽  
Hyeon-Jin Moon ◽  
Mark B. Glick ◽  
Seung-Il Moon

Recently, isolated microgrids have been operated using renewable energy sources (RESs), diesel generators, and battery energy storage systems (BESSs) for an economical and reliable power supply to loads. The concept of the complementary control, in which power imbalances are managed by diesel generators in the long time scale and BESSs in the short time scale, is widely adopted in isolated microgrids for efficient and stable operation. This paper proposes a new complementary control strategy for regulating the frequency and state of charge (SOC) when the system has multiple diesel generators and BESSs. In contrast to conventional complementary control, the proposed control strategy enables the parallel operation of diesel generators and BESSs, as well as SOC management. Furthermore, diesel generators regulate the equivalent SOC of BESSs with hierarchical control. Additionally, BESSs regulate the frequency of the system with hierarchical control and manage their individual SOCs. We conducted a case study by using Simulink/MATLAB to verify the effectiveness of the proposed control strategy in comparison with conventional complementary control.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5146
Author(s):  
Pantelis A. Dratsas ◽  
Georgios N. Psarros ◽  
Stavros A. Papathanassiou

The objective of this paper is to evaluate the contribution of energy storage systems to resource adequacy of power systems experiencing increased levels of renewables penetration. To this end, a coherent methodology for the assessment of system capacity adequacy and the calculation of energy storage capacity value is presented, utilizing the Monte Carlo technique. The main focus is on short-duration storage, mainly battery energy storage systems (BESS), whose capacity values are determined for different power and energy configurations. Alternative operating policies (OPs) are implemented, prioritizing system cost or reliability, to demonstrate the significant effect storage management may have on its contribution to system adequacy. A medium-sized island system is used as a study case, applying a mixed integer linear programming (MILP) generation scheduling model to simulate BESS and system operation under each OP, in order to determine capacity contribution and overall performance in terms of renewable energy sources (RES) penetration, system operating cost and BESS lifetime expectancy. This study reveals that BESS contribution to system adequacy can be significant (capacity credit values up to ~85%), with energy capacity proving to be the most significant parameter. Energy storage may at the same time enhance system reliability, reduce generation cost and support RES integration, provided that it is appropriately managed; a combined reliability-oriented and cost-driven management approach is shown to yield optimal results.


Sign in / Sign up

Export Citation Format

Share Document