scholarly journals Urban Open Platform for Borderless Smart Cities

2022 ◽  
Vol 12 (2) ◽  
pp. 700
Author(s):  
Ralf-Martin Soe ◽  
Timo Ruohomäki ◽  
Henry Patzig

As a network of connected sensors to transform data into knowledge, Urban Platforms have been rooted in several smart city projects. However, this has often resulted in them being no more than IoT dashboards. More recently, there has been an increased interest in supporting the data governance and distributed architecture of Urban Platforms in order to adjust these with the administrative structure in a specific city. In addition, Urban Platforms also deal with data roaming between different stakeholders including other cities, different government levels, companies and citizens. Nevertheless, the first deployments have led to an inflexible “smart cities in a box” approach that does not help with building digital skills and causes vendor lock-in to products that do not scale. There is a need to start with simple and widespread urban services through a collaborative joint cross-border, hands-on effort. In order to meet the level of interoperability, international standards should be adopted. The aim of an Urban Open Platform (UOP), introduced in this paper, is to support not only data acquisition but also various types of data processing: data is aggregated, processed, manipulated and extended within the city context. Conceptually, special attention has been put on scalability, roaming and reliability in urban environments. This article introduces the UOP uniquely in the cross-border data exchange context of two European capital cities, Helsinki and Tallinn, and validates it with 10 real-life urban use cases.

Data ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 16 ◽  
Author(s):  
Silke Cuno ◽  
Lina Bruns ◽  
Nikolay Tcholtchev ◽  
Philipp Lämmel ◽  
Ina Schieferdecker

European cities and communities (and beyond) require a structured overview and a set of tools as to achieve a sustainable transformation towards smarter cities/municipalities, thereby leveraging on the enormous potential of the emerging data driven economy. This paper presents the results of a recent study that was conducted with a number of German municipalities/cities. Based on the obtained and briefly presented recommendations emerging from the study, the authors propose the concept of an Urban Data Space (UDS), which facilitates an eco-system for data exchange and added value creation thereby utilizing the various types of data within a smart city/municipality. Looking at an Urban Data Space from within a German context and considering the current situation and developments in German municipalities, this paper proposes a reasonable classification of urban data that allows the relation of various data types to legal aspects, and to conduct solid considerations regarding technical implementation designs and decisions. Furthermore, the Urban Data Space is described/analyzed in detail, and relevant stakeholders are identified, as well as corresponding technical artifacts are introduced. The authors propose to setup Urban Data Spaces based on emerging standards from the area of ICT reference architectures for Smart Cities, such as DIN SPEC 91357 “Open Urban Platform” and EIP SCC. In the course of this, the paper walks the reader through the construction of a UDS based on the above-mentioned architectures and outlines all the goals, recommendations and potentials, which an Urban Data Space can reveal to a municipality/city. Finally, we aim at deriving the proposed concepts in a way that they have the potential to be part of the required set of tools towards the sustainable transformation of German and European cities in the direction of smarter urban environments, based on utilizing the hidden potential of digitalization and efficient interoperable data exchange.


Author(s):  
Silke Cuno ◽  
Lina Bruns ◽  
Nikolay Tcholtchev ◽  
Philipp Lämmel ◽  
Ina Schieferdecker

This paper presents the results of a recent study that was conducted with a number of German municipalities/cities. Based on the obtained and briefly presented recommendations emerging from the study, the authors propose the concept of an Urban Data Space (UDS), which facilitates an eco-system for data exchange and added value creation thereby utilizing the various types of data within a smart city/municipality. Looking at an Urban Data Space from within a German context and considering the current situation and developments in German municipalities, this paper proposes a reasonable classification of urban data that allows to relate the various data types to legal aspects and to conduct solid considerations regarding technical implementation designs and decisions. Furthermore, the Urban Data Space is described/analyzed in detail, and relevant stakeholders are identified, as well as corresponding technical artifacts are introduced. The authors propose to setup Urban Data Spaces based on emerging standards from the area of ICT reference architectures for Smart Cities, such as DIN SPEC 91357 “Open Urban Platform” and EIP SCC. Thereby, the paper walks the reader through the construction of an UDS based on the above mentioned architectures and outlines all the goals, recommendations and potentials, which an Urban Data Space can reveal to a municipality/city.


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 253-270
Author(s):  
Mohammed Bin Hariz ◽  
Dhaou Said ◽  
Hussein T. Mouftah

This paper focuses on transportation models in smart cities. We propose a new dynamic mobility traffic (DMT) scheme which combines public buses and car ride-sharing. The main objective is to improve transportation by maximizing the riders’ satisfaction based on real-time data exchange between the regional manager, the public buses, the car ride-sharing and the riders. OpenStreetMap and OMNET++ were used to implement a realistic scenario for the proposed model in a city like Ottawa. The DMT scheme was compared to a multi-loading system used for a school bus. Simulations showed that rider satisfaction was enhanced when a suitable combination of transportation modes was used. Additionally, compared to the other scheme, this DMT scheme can reduce the stress level of car ride-sharing and public buses during the day to the minimal level.


2020 ◽  
Vol 12 (18) ◽  
pp. 2928
Author(s):  
Jan Mortier ◽  
Gaël Pagès ◽  
Jordi Vilà-Valls

Global Navigation Satellite Systems (GNSS) is the technology of choice for outdoor positioning purposes but has many limitations when used in safety-critical applications such Intelligent Transportation Systems (ITS) and Unmanned Autonomous Systems (UAS). Namely, its performance clearly degrades in harsh propagation conditions and is not reliable due to possible attacks or interference. Moreover, GNSS signals may not be available in the so-called GNSS-denied environments, such as deep urban canyons or indoors, and standard GNSS architectures do not provide the precision needed in ITS. Among the different alternatives, cellular signals (LTE/5G) may provide coverage in constrained urban environments and Ultra-Wideband (UWB) ranging is a promising solution to achieve high positioning accuracy. The key points impacting any time-of-arrival (TOA)-based navigation system are (i) the transmitters’ geometry, (ii) a perfectly known transmitters’ position, and (iii) the environment. In this contribution, we analyze the performance loss of alternative TOA-based navigation systems in real-life applications where we may have both transmitters’ position mismatch, harsh propagation environments, and GNSS-denied conditions. In addition, we propose new robust filtering methods able to cope with both effects up to a certain extent. Illustrative results in realistic scenarios are provided to support the discussion and show the performance improvement brought by the new methodologies with respect to the state-of-the-art.


Author(s):  
Mike Surridge ◽  
Ken Meacham ◽  
Juri Papay ◽  
Stephen C. Phillips ◽  
J. Brian Pickering ◽  
...  

2021 ◽  
Author(s):  
Anne Dahl ◽  
Reetta Mattila ◽  
Linda Olkkonen ◽  
Heikki Saarinen ◽  
Torbjörn Sandell ◽  
...  

2017 ◽  
Vol 15 (2) ◽  
pp. 301-320
Author(s):  
Maria Kaczorowska

The development of information technologies offers new possibilities of use of information collected in public registers, such as land registers and cadastres, which play a significant role in establishing the infrastructure for spatial information. Efficient use of spatial information systems with the purpose of a sustainable land management shall be based on en suring the interconnection of different information resources, data exchange, as well as a broad access to data. The role of land registration systems in the context of technological advancement was the subject of the Common Vision Conference 2016. Migration to a Smart World, held on 5–7 June 2016 in Amsterdam. The conference was organized by Europe’s five leading mapping, cadastre and land registry associations, cooperating within a “Common Vision” agreement: EuroGeographics, Permanent Committee on Cadastre, European Land Registries Association, European Land Information Service and Council of European Geodetic Surveyors. The discussion during the conference focused on topics regarding the idea of smart cities, marine cadastre, interoperability of spatial data, as well as the impact of land registers and cadastres on creating the infrastructure for spatial information and developing e-government, at both national and European levels. The paper aims to present an overview of issues covered by the conference and also to highlight some important problems arising from implementing advanced technology solutions in the field of land registration.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 502
Author(s):  
Roberta Jacoby Cureau ◽  
Ilaria Pigliautile ◽  
Anna Laura Pisello

The rapid urbanization process brings consequences to urban environments, such poor air quality and the urban heat island issues. Due to these effects, environmental monitoring is gaining attention with the aim of identifying local risks and improving cities’ liveability and resilience. However, these environments are very heterogeneous, and high-spatial-resolution data are needed to identify the intra-urban variations of physical parameters. Recently, wearable sensing techniques have been used to perform microscale monitoring, but they usually focus on one environmental physics domain. This paper presents a new wearable system developed to monitor key multidomain parameters related to the air quality, thermal, and visual domains, on a hyperlocal scale from a pedestrian’s perspective. The system consisted of a set of sensors connected to a control unit settled on a backpack and could be connected via Wi-Fi to any portable equipment. The device was prototyped to guarantee the easy sensors maintenance, and a user-friendly dashboard facilitated a real-time monitoring overview. Several tests were conducted to confirm the reliability of the sensors. The new device will allow comprehensive environmental monitoring and multidomain comfort investigations to be carried out, which can support urban planners to face the negative effects of urbanization and to crowd data sourcing in smart cities.


Author(s):  
Hector Rico-Garcia ◽  
Jose-Luis Sanchez-Romero ◽  
Antonio Jimeno-Morenilla ◽  
Hector Migallon-Gomis

The development of the smart city concept and the inhabitants’ need to reduce travel time, as well as society’s awareness of the reduction of fuel consumption and respect for the environment, lead to a new approach to the classic problem of the Travelling Salesman Problem (TSP) applied to urban environments. This problem can be formulated as “Given a list of geographic points and the distances between each pair of points, what is the shortest possible route that visits each point and returns to the departure point?” Nowadays, with the development of IoT devices and the high sensoring capabilities, a large amount of data and measurements are available, allowing researchers to model accurately the routes to choose. In this work, the purpose is to give solution to the TSP in smart city environments using a modified version of the metaheuristic optimization algorithm TLBO (Teacher Learner Based Optimization). In addition, to improve performance, the solution is implemented using a parallel GPU architecture, specifically a CUDA implementation.


Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 161 ◽  
Author(s):  
Panagiotis Eliopoulos ◽  
Nikolaos-Alexandros Tatlas ◽  
Iraklis Rigakis ◽  
Ilyas Potamitis

We introduce a device for the automatic detecting and reporting of crawling insects in urban environments. It is a monitoring device for urban pests that complies with the context of smart homes and smart cities, and is compatible with the emerging discipline of the Internet of Things (IoT). We believe it can find its place in every room of a hotel, hospital, military camp, and residence. This box-shaped device attracts targeted insect pests, senses the entering insect, and takes automatically a picture of the internal space of the box. The e-trap includes strong attractants (pheromone and/or food) to increase capture efficiency and traps the insect on its sticky floor. The device carries the necessary optoelectronic sensors to monitor all entrances of the trap. As the insect enters it interrupts the infrared light source. This triggers a detection event; a picture is taken, and a time-stamp is set before delivering the picture through the Wi-Fi to an authorized person/stakeholder. The device can be integrated seamlessly in urban environments and operates unobtrusively to human activities. We report results on various insect pests and depending on the insect species, can reach a detection accuracy ranging from 96 to 99%.


Sign in / Sign up

Export Citation Format

Share Document