scholarly journals Optimal Wavelength Selection for Hyperspectral Imaging Evaluation on Vegetable Soybean Moisture Content during Drying

2019 ◽  
Vol 9 (2) ◽  
pp. 331
Author(s):  
Peng Yu ◽  
Min Huang ◽  
Min Zhang ◽  
Bao Yang

Hyperspectral imaging technology is a promising technique for nondestructive quality evaluation of dried products. In order to realize real-time, online inspection of quality of dried products, it is necessary to determine a few important wavelengths from hyperspectral images for developing a multispectral imaging system. This study presents a binary firework algorithm (BFWA) for selecting the optimal wavelengths from hyperspectral images for moisture evaluation of dried soybean. Hyperspectral images over the spectral region 400–1000 nm, were acquired for 270 dried soybean samples, and mean reflectance was calculated from hyperspectral images for each wavelength. After selecting 12 important wavelengths using BFWA, a moisture prediction model was developed using partial least squares regression (PLSR). The PLSR model with BFWA achieved a prediction accuracy of R p = 0.966 and R M S E P = 5.105 % , which is better than those of successive projections algorithm ( R p = 0.932 and R M S E P = 7.329 % ), and the uninformative viable elimination algorithm ( R p = 0.928 and R M S E P = 7.416 % ). The results obtained by BFWA were more stable, with a smaller standard deviation of R p and R M S E P than those of the genetic algorithm. The BFWA method provides an effective mean for optimal wavelength selection to predict the quality of soybeans during drying.

2020 ◽  
Vol 8 (4) ◽  
pp. 552
Author(s):  
Evgenia D. Spyrelli ◽  
Agapi I. Doulgeraki ◽  
Anthoula A. Argyri ◽  
Chrysoula C. Tassou ◽  
Efstathios Z. Panagou ◽  
...  

The aim of this study was to investigate on an industrial scale the potential of multispectral imaging (MSI) in the assessment of the quality of different poultry products. Therefore, samples of chicken breast fillets, thigh fillets, marinated souvlaki and burger were subjected to MSI analysis during production together with microbiological analysis for the enumeration of Total Viable Counts (TVC) and Pseudomonas spp. Partial Least Squares Regression (PLS-R) models were developed based on the spectral data acquired to predict the “time from slaughter” parameter for each product type. Results showed that PLS-R models could predict effectively the time from slaughter in all products, while the food matrix and variations within and between batches were identified as significant factors affecting the performance of the models. The chicken thigh model showed the lowest RMSE value (0.160) and an acceptable correlation coefficient (r = 0.859), followed by the chicken burger model where RMSE and r values were 0.285 and 0.778, respectively. Additionally, for the chicken breast fillet model the calculated r and RMSE values were 0.886 and 0.383 respectively, whereas for chicken marinated souvlaki, the respective values were 0.934 and 0.348. Further improvement of the provided models is recommended in order to develop efficient models estimating time from slaughter.


2018 ◽  
Vol 34 (5) ◽  
pp. 789-798 ◽  
Author(s):  
Yuechun Zhang ◽  
Jun Sun ◽  
Junyan Li ◽  
Xiaohong Wu ◽  
Chunmei Dai

Abstract.In order to ensure that safe and healthy tomatoes can be provided to people, a method for quantitative determination of cadmium content in tomato leaves based on hyperspectral imaging technology was put forward in this study. Tomato leaves with seven cadmium stress gradients were studied. Hyperspectral images of all samples were firstly acquired by the hyperspectral imaging system, then the spectral data were extracted from the hyperspectral images. To simplify the model, three algorithms of competitive adaptive reweighted sampling (CARS), variable combination population analysis (VCPA) and bootstrapping soft shrinkage (BOSS) were used to select the feature wavelengths ranging from 431 to 962 nm. Final results showed that BOSS can improve prediction performance and greatly reduce features when compared with the other two selection methods. The BOSS model got the best accuracy in calibration and prediction with R2c of 0.9907 and RMSEC of 0.4257mg/kg, R2p of 0.9821, and RMSEP of 0.6461 mg/kg. Hence, the method of hyperspectral technology combined with the BOSS feature selection is feasible for detecting the cadmium content of tomato leaves, which can potentially provide a new method and thought for cadmium content detection of other crops. Keywords: Feature selection, Hyperspectral image technology, Non-destructive analysis, Regression model, Tomato leaves.


2018 ◽  
Author(s):  
Mohammadmehdi Saberioon ◽  
Petr Cisar ◽  
Laurent Labbé ◽  
Pavel Souček ◽  
Pablo Pelissier

The main aim of this study was to evaluate the feasibility of hyperspectral imagery for determining the influence of different diets on fish skin. Rainbow trout (Oncorhynchus mykiss) were fed either a commercial based diet (N= 80) or a 100 % plant-based diet (N = 80). Hyperspectral images were made using a push-broom hyperspectral imaging system in the spectral region of 394-1009 nm. All images were calibrated using dark and white reference and the average spectral data from the region of interest were extracted. Six spectral pre-treatment methods were used, including Savitzky-Golay (SG), First Derivative(FD), Second Derivative (SD), Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) then a support vector machine (SVM) with linear kernel was applied to establish the classification models. Additionally, the Genetic algorithm (GA) was used to select optimal wavelengths to reduce the high dimensionality from hyperspectral images in order to decrease the computational costs and simplify the classification models. Overall classification models established from full wavelengths and selected wavelengths showed the good performance (Correct Classification Rate (CCR) = 0.871, Kappa = 0.741) when coupled with SG. The overall results indicate that the integration of Vis/NIR hyperspectral imaging system and machine learning algorithms has promise for discriminating different diets based on the live fish skin.


2019 ◽  
Vol 27 (4) ◽  
pp. 314-329 ◽  
Author(s):  
Jun-Li Xu ◽  
Alexia Gobrecht ◽  
Nathalie Gorretta ◽  
Daphné Héran ◽  
Aoife A Gowen ◽  
...  

This study was carried out to investigate the feasibility of an original polarized hyperspectral imaging setup in the spectral range of 400–1100 nm for enhancement of absorbance signal measurement on highly scattering samples. Spatial response and spectral calibration have been verified, indicating the consistency of this system and reliability of the acquired data. Model samples consisting of layered sand were prepared and used to uncover the hidden spectral information. In the model matrix, sand worked as scattering particle and dye E141 as absorbing material. Cross ([Formula: see text]) and parallel ([Formula: see text]) reflectance signals, along with the back-scattered reflectance, [Formula: see text]([Formula: see text]+[Formula: see text]) and the weakly scattered reflectance [Formula: see text] ([Formula: see text]−[Formula: see text]) spectra were computed and compared. Results demonstrated that cross-polarized images showed more subsurface information from the second layer due to the rejection of the superficial reflectance, while weakly scattered reflectance ([Formula: see text]) preserved only the surface information from the first layer. In addition, polarized light spectroscopy absorbance based on Dahm's equation in the frame of the representative layer theory and standard normal variate preprocessing [Formula: see text] spectra were also obtained from the prepared model matrix. The visual inspection of spectral curves revealed that [Formula: see text] and PoLiS absorbance showed two narrow peaks at 405 nm and 630 nm that were less impacted by multi-scattering effects. Partial least squares regression models were developed to predict dye concentration in the mixture sample. Consistent with the spectral profiles, [Formula: see text] and PoLiS absorbance presented the best model performances with determination of coefficients of prediction ([Formula: see text]) equal to 0.96 and 0.95, respectively. The resulting distribution maps of S1/S2 sand sample again confirmed the superior performance of [Formula: see text] and PoLiS absorbance, manifesting their better ability to reveal chemically related information. The overall results obtained in this research showed that the developed polarized-hyperspectral imaging system coupled with scattering correction methods has great potential for the analysis of powdered or turbid samples.


2011 ◽  
Vol 317-319 ◽  
pp. 909-914
Author(s):  
Ying Lan Jiang ◽  
Ruo Yu Zhang ◽  
Jie Yu ◽  
Wan Chao Hu ◽  
Zhang Tao Yin

Agricultural products quality which included intrinsic attribute and extrinsic characteristic, closely related to the health of consumer and the exported cost. Now, imaging (machine vision) and spectrum are two main nondestructive inspection technologies to be applied. Hyperspectral imaging, a new emerging technology developed for detecting quality of the food and agricultural products in recent years, combined techniques of conventional imaging and spectroscopy to obtain both spatial and spectral information from an objective simultaneously. This paper compared the advantage and disadvantage of imaging, spectrum and hyperspectral imaging technique, and provided a description to basic principle, feature of hyperspectral imaging system and calibration of hyperspectral reflectance images. In addition, the recent advances for the application of hyperspectral imaging to agricultural products quality inspection were reviewed in other countries and China.


2011 ◽  
Vol 204-210 ◽  
pp. 131-134 ◽  
Author(s):  
Wei Zou ◽  
Hui Fang ◽  
Yi Dan Bao ◽  
Yong He

Hyperspectral imaging (400-1000nm) and artificial neural network (ANN) techniques were investigated for the detection of nitrogen content changes of rape leaf. Measuring SPAD value of rape leaf by using SPAD (Soil and Plant Analyzer Development).A hyperspectral imaging system was established to acquire hyperspectral data. Principal component analysis(PCA) was used to obtain principal component images, as well as to select the optimal wavelength(s). ANN was applied to establish the model between the spectral reflection values and SPAD values. The prediction results were obtained for the nitrogen content of rape leaf with the correlation of prediction of R=0.9237. The results show that the hyperspectral imaging has good classification on different nitrogen content of rape leaf.


2020 ◽  
Vol 12 (13) ◽  
pp. 2070
Author(s):  
Geonwoo Kim ◽  
Insuck Baek ◽  
Matthew D. Stocker ◽  
Jaclyn E. Smith ◽  
Andrew L. Van Tassell ◽  
...  

This study provides detailed information about the use of a hyperspectral imaging system mounted on a motor-driven multipurpose floating platform (MFP) for water quality sensing and water sampling, including the spatial and spectral calibration for the camera, image acquisition and correction procedures. To evaluate chlorophyll-a concentrations in an irrigation pond, visible/near-infrared hyperspectral images of the water were acquired as the MFP traveled to ten water sampling locations along the length of the pond, and dimensionality reduction with correlation analysis was performed to relate the image data to the measured chlorophyll-a data. About 80,000 sample images were acquired by the line-scan method. Image processing was used to remove sun-glint areas present in the raw hyperspectral images before further analysis was conducted by principal component analysis (PCA) to extract three key wavelengths (662 nm, 702 nm, and 752 nm) for detecting chlorophyll-a in irrigation water. Spectral intensities at the key wavelengths were used as inputs to two near-infrared (NIR)-red models. The determination coefficients (R2) of the two models were found to be about 0.83 and 0.81. The results show that hyperspectral imagery from low heights can provide valuable information about water quality in a fresh water source.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Zhengyan Xia ◽  
Chu Zhang ◽  
Haiyong Weng ◽  
Pengcheng Nie ◽  
Yong He

Hyperspectral imaging (HSI) technology has increasingly been applied as an analytical tool in fields of agricultural, food, and Traditional Chinese Medicine over the past few years. The HSI spectrum of a sample is typically achieved by a spectroradiometer at hundreds of wavelengths. In recent years, considerable effort has been made towards identifying wavelengths (variables) that contribute useful information. Wavelengths selection is a critical step in data analysis for Raman, NIRS, or HSI spectroscopy. In this study, the performances of 10 different wavelength selection methods for the discrimination of Ophiopogon japonicus of different origin were compared. The wavelength selection algorithms tested include successive projections algorithm (SPA), loading weights (LW), regression coefficients (RC), uninformative variable elimination (UVE), UVE-SPA, competitive adaptive reweighted sampling (CARS), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), and genetic algorithms (GA-PLS). One linear technique (partial least squares-discriminant analysis) was established for the evaluation of identification. And a nonlinear calibration model, support vector machine (SVM), was also provided for comparison. The results indicate that wavelengths selection methods are tools to identify more concise and effective spectral data and play important roles in the multivariate analysis, which can be used for subsequent modeling analysis.


2018 ◽  
Author(s):  
Mohammadmehdi Saberioon ◽  
Petr Cisar ◽  
Laurent Labbé ◽  
Pavel Souček ◽  
Pablo Pelissier

The main aim of this study was to evaluate the feasibility of hyperspectral imagery for determining the influence of different diets on fish skin. Rainbow trout (Oncorhynchus mykiss) were fed either a commercial based diet (N= 80) or a 100 % plant-based diet (N = 80). Hyperspectral images were made using a push-broom hyperspectral imaging system in the spectral region of 394-1009 nm. All images were calibrated using dark and white reference and the average spectral data from the region of interest were extracted. Six spectral pre-treatment methods were used, including Savitzky-Golay (SG), First Derivative(FD), Second Derivative (SD), Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC) then a support vector machine (SVM) with linear kernel was applied to establish the classification models. Additionally, the Genetic algorithm (GA) was used to select optimal wavelengths to reduce the high dimensionality from hyperspectral images in order to decrease the computational costs and simplify the classification models. Overall classification models established from full wavelengths and selected wavelengths showed the good performance (Correct Classification Rate (CCR) = 0.871, Kappa = 0.741) when coupled with SG. The overall results indicate that the integration of Vis/NIR hyperspectral imaging system and machine learning algorithms has promise for discriminating different diets based on the live fish skin.


Sign in / Sign up

Export Citation Format

Share Document