scholarly journals Clustering and Auction-Based Power Allocation Algorithm for Energy Efficiency Maximization in Multi-Cell Multi-Carrier NOMA Networks

2019 ◽  
Vol 9 (23) ◽  
pp. 5034 ◽  
Author(s):  
Abuzar B. M. Adam ◽  
Xiaoyu Wan ◽  
Zhengqiang Wang

In this paper, we investigate the energy efficiency (EE) maximization in multi-cell multi-carrier non-orthogonal multiple access (MCMC-NOMA) networks. To achieve this goal, an optimization problem is formulated then the solution is divided into two parts. First, we investigate the inter-cell interference mitigation and then we propose an auction-based non-cooperative game for power allocation for base stations. Finally, to guarantee the rate requirements for users, power is allocated fairly to users. The simulation results show that the proposed scheme has the best performance compared with the existing NOMA-based fractional transmit power allocation (FTPA) and the conventional orthogonal frequency division multiple access (OFDMA).

2015 ◽  
Vol 24 (05) ◽  
pp. 1550061
Author(s):  
Mateus de Paula Marques ◽  
Taufik Abrão

This paper addresses the optimization problem on subcarrier and power allocation of orthogonal frequency division multiple access (OFDMA) system under spectral efficiency (SE) metric when deploying superposition coding (SC) transmission strategy. An algorithm with polynomial time complexity, of the order of (UN log 2(N)) has been proposed for sub-optimal SE maximization. Results indicate that the system SE increases with the use of SC technique. Besides, the throughput gain with SC adoption increases when the number of users (U) approaches the number of subcarriers (N) available in the system.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Rong Chai ◽  
Mingxue Chen ◽  
Qianbin Chen ◽  
Yuanpeng Gao

In recent years, heterogeneous radio access technologies have experienced rapid development and gradually achieved effective coordination and integration, resulting in heterogeneous networks (HetNets). In this paper, we consider the downlink secure transmission of HetNets where the information transmission from base stations (BSs) to legitimate users is subject to the interception of eavesdroppers. In particular, we stress the problem of joint user association and power allocation of the BSs. To achieve data transmission in a secure and energy efficient manner, we introduce the concept of secrecy energy efficiency which is defined as the ratio of the secrecy transmission rate and power consumption of the BSs and formulate the problem of joint user association and power allocation as an optimization problem which maximizes the joint secrecy energy efficiency of all the BSs under the power constraint of the BSs and the minimum data rate constraint of user equipment (UE). By equivalently transforming the optimization problem into two subproblems, that is, power allocation subproblem and user association subproblem of the BSs, and applying iterative method and Kuhn-Munkres (K-M) algorithm to solve the two subproblems, respectively, the optimal user association and power allocation strategies can be obtained. Numerical results demonstrate that the proposed algorithm outperforms previously proposed algorithms.


2021 ◽  
Author(s):  
Lilatul Ferdouse

This thesis focuses on resource management both in communication and computing sides of the cloud radio access networks (C-RANs). Communication and computing resources are bandwidth, power, baseband unit servers, and virtual machines, which become major resource allocation elements of C-RANs. If they are not properly handled, they create congestion and overload problems in radio access network and core network part of the backbone cellular network. We study two general problems of C-RAN networks, referred to as communication and computing resource allocation problem along with user association, base band unit (BBU) and remote radio heads (RRH) mapping problems in order to improve energy efficiency, sum data rate and to minimize delay performance of C-RAN networks. In this thesis, we propose, implement, and evaluate several solution strategies, namely posterior probability based user association and power allocation method, double-sided auction based distributed resource allocation method, the energy efficient joint workload scheduling and BBU allocation and iterative resource allocation method to deal with the resource management problems in both orthogonal and non-orthogonal multiple access supported C-RAN networks. In the posterior probability based user association and power allocation method, we apply Bayes theory to solve the multi-cell association problem in the coordinated multi-point supported C-RANs. We also use queueing and auction theory to solve the joint communication and computing resource optimization problem. As the joint optimization problem, we investigate the delay and sum data rate performance of C-RANs. To improve the energy efficiency of C-RANs, we employ Dinkelbach theorem and propose an iterative resource allocation method. Our proposed methods are evaluated via simulations by considering the effect of bandwidth utilization percentage, different scheduling weight, signal-to-interference ratio threshold value and number of users. The results show that the proposed methods can be successfully implemented for 5G C-RANs. Among the various non-orthogonal multiple access schemes, we consider and implement the sparse code multiple access (SCMA) scheme to jointly optimize the codebook and power allocation in the downlink of the C-RANs, where the utilization of sparse code multiple access in C-RANs to improve energy efficiency has not been investigated in detail in the literature. To solve the NP-hard joint optimization problem, we decompose the original problem into two subproblems: codebook allocation and power allocation. Using the graph theory, we propose the throughput aware sparse code multiple access based codebook selection method, which generates a stable codebook allocation solution within a finite number of steps. For the power allocation solution, we propose the iterative level-based power allocation method, which incorporates different power allocation approaches (e.g., weighted and successive interference cancellation ) into different levels to satisfy the maximum power requirement. Simulation results show that the sum data rate and energy efficiency performance of non-orthogonal multiple access supported C-RANs significantly increases with the number of users when the successive interference cancellation aware geometric water-filling based power allocation is used.


2021 ◽  
Author(s):  
Lilatul Ferdouse

This thesis focuses on resource management both in communication and computing sides of the cloud radio access networks (C-RANs). Communication and computing resources are bandwidth, power, baseband unit servers, and virtual machines, which become major resource allocation elements of C-RANs. If they are not properly handled, they create congestion and overload problems in radio access network and core network part of the backbone cellular network. We study two general problems of C-RAN networks, referred to as communication and computing resource allocation problem along with user association, base band unit (BBU) and remote radio heads (RRH) mapping problems in order to improve energy efficiency, sum data rate and to minimize delay performance of C-RAN networks. In this thesis, we propose, implement, and evaluate several solution strategies, namely posterior probability based user association and power allocation method, double-sided auction based distributed resource allocation method, the energy efficient joint workload scheduling and BBU allocation and iterative resource allocation method to deal with the resource management problems in both orthogonal and non-orthogonal multiple access supported C-RAN networks. In the posterior probability based user association and power allocation method, we apply Bayes theory to solve the multi-cell association problem in the coordinated multi-point supported C-RANs. We also use queueing and auction theory to solve the joint communication and computing resource optimization problem. As the joint optimization problem, we investigate the delay and sum data rate performance of C-RANs. To improve the energy efficiency of C-RANs, we employ Dinkelbach theorem and propose an iterative resource allocation method. Our proposed methods are evaluated via simulations by considering the effect of bandwidth utilization percentage, different scheduling weight, signal-to-interference ratio threshold value and number of users. The results show that the proposed methods can be successfully implemented for 5G C-RANs. Among the various non-orthogonal multiple access schemes, we consider and implement the sparse code multiple access (SCMA) scheme to jointly optimize the codebook and power allocation in the downlink of the C-RANs, where the utilization of sparse code multiple access in C-RANs to improve energy efficiency has not been investigated in detail in the literature. To solve the NP-hard joint optimization problem, we decompose the original problem into two subproblems: codebook allocation and power allocation. Using the graph theory, we propose the throughput aware sparse code multiple access based codebook selection method, which generates a stable codebook allocation solution within a finite number of steps. For the power allocation solution, we propose the iterative level-based power allocation method, which incorporates different power allocation approaches (e.g., weighted and successive interference cancellation ) into different levels to satisfy the maximum power requirement. Simulation results show that the sum data rate and energy efficiency performance of non-orthogonal multiple access supported C-RANs significantly increases with the number of users when the successive interference cancellation aware geometric water-filling based power allocation is used.


2021 ◽  
Vol 11 (2) ◽  
pp. 716
Author(s):  
Ruibiao Chen ◽  
Fangxing Shu ◽  
Kai Lei ◽  
Jianping Wang ◽  
Liangjie Zhang

Non-orthogonal multiple access (NOMA) has been considered a promising technique for the fifth generation (5G) mobile communication networks because of its high spectrum efficiency. In NOMA, by using successive interference cancellation (SIC) techniques at the receivers, multiple users with different channel gain can be multiplexed together in the same subchannel for concurrent transmission in the same spectrum. The simultaneously multiple transmission achieves high system throughput in NOMA. However, it also leads to more energy consumption, limiting its application in many energy-constrained scenarios. As a result, the enhancement of energy efficiency becomes a critical issue in NOMA systems. This paper focuses on efficient user clustering strategy and power allocation design of downlink NOMA systems. The energy efficiency maximization of downlink NOMA systems is formulated as an NP-hard optimization problem under maximum transmission power, minimum data transmission rate requirement, and SIC requirement. For the approximate solution with much lower complexity, we first exploit a quick suboptimal clustering method to assign each user to a subchannel. Given the user clustering result, the optimal power allocation problem is solved in two steps. By employing the Lagrangian multiplier method with Karush–Kuhn–Tucker optimality conditions, the optimal power allocation is calculated for each subchannel. In addition, then, an inter-cluster dynamic programming model is further developed to achieve the overall maximum energy efficiency. The theoretical analysis and simulations show that the proposed schemes achieve a significant energy efficiency gain compared with existing methods.


2021 ◽  
Vol 40 (5) ◽  
pp. 9007-9019
Author(s):  
Jyotirmayee Subudhi ◽  
P. Indumathi

Non-Orthogonal Multiple Access (NOMA) provides a positive solution for multiple access issues and meets the criteria of fifth-generation (5G) networks by improving service quality that includes vast convergence and energy efficiency. The problem is formulated for maximizing the sum rate of MIMO-NOMA by assigning power to multiple layers of users. In order to overcome these problems, two distinct evolutionary algorithms are applied. In particular, the recently implemented Salp Swarm Algorithm (SSA) and the prominent Optimization of Particle Swarm (PSO) are utilized in this process. The MIMO-NOMA model optimizes the power allocation by layered transmission using the proposed Joint User Clustering and Salp Particle Swarm Optimization (PPSO) power allocation algorithm. Also, the closed-form expression is extracted from the current Channel State Information (CSI) on the transmitter side for the achievable sum rate. The efficiency of the proposed optimal power allocation algorithm is evaluated by the spectral efficiency, achievable rate, and energy efficiency of 120.8134bits/s/Hz, 98Mbps, and 22.35bits/Joule/Hz respectively. Numerical results have shown that the proposed PSO algorithm has improved performance than the state of art techniques in optimization. The outcomes on the numeric values indicate that the proposed PSO algorithm is capable of accurately improving the initial random solutions and converging to the optimum.


2021 ◽  
Author(s):  
Anand Jee ◽  
KAMAL AGRAWAL ◽  
Shankar Prakriya

This paper investigates the performance of a framework for low-outage downlink non-orthogonal multiple access (NOMA) signalling using a coordinated direct and relay transmission (CDRT) scheme with direct links to both the near-user (NU) and the far-user (FU). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying are considered. In this framework, NU and FU combine the signals from BS and R to attain good outage performance and harness a diversity of two without any need for feedback. For the NU, this serves as an incentive to participate in NOMA signalling. For both NU and FU, expressions for outage probability and throughput are derived in closed form. High-SNR approximations to the outage probability are also presented. We demonstrate that the choice of power allocation coefficient and target rate is crucial to maximize the NU performance while ensuring a desired FU performance. We demonstrate performance gain of the proposed scheme over selective decode-and-forward (SDF) CDRT-NOMA in terms of three metrics: outage probability, sum throughput and energy efficiency. Further, we demonstrate that by choosing the target rate intelligently, the proposed CDRT NOMA scheme ensures higher energy efficiency (EE) in comparison to its orthogonal multiple access counterpart. Monte Carlo simulations validate the derived expressions.


2020 ◽  
Vol 10 (17) ◽  
pp. 5892 ◽  
Author(s):  
Zuhura J. Ali ◽  
Nor K. Noordin ◽  
Aduwati Sali ◽  
Fazirulhisyam Hashim ◽  
Mohammed Balfaqih

Non-orthogonal multiple access (NOMA) plays an important role in achieving high capacity for fifth-generation (5G) networks. Efficient resource allocation is vital for NOMA system performance to maximize the sum rate and energy efficiency. In this context, this paper proposes optimal solutions for user pairing and power allocation to maximize the system sum rate and energy efficiency performance. We identify the power allocation problem as a nonconvex constrained problem for energy efficiency maximization. The closed-form solutions are derived using Karush–Kuhn–Tucker (KKT) conditions for maximizing the system sum rate and the Dinkelbach (DKL) algorithm for maximizing system energy efficiency. Moreover, the Hungarian (HNG) algorithm is utilized for pairing two users with different channel condition circumstances. The results show that with 20 users, the sum rate of the proposed NOMA with optimal power allocation using KKT conditions and HNG (NOMA-PKKT-HNG) is 6.7% higher than that of NOMA with difference of convex programming (NOMA-DC). The energy efficiency with optimal power allocation using DKL and HNG (NOMA-PDKL-HNG) is 66% higher than when using NOMA-DC.


Sign in / Sign up

Export Citation Format

Share Document