scholarly journals Thermoeconomic Optimization of a Hybrid Photovoltaic-Solid Oxide Fuel Cell System for Decentralized Application

2019 ◽  
Vol 9 (24) ◽  
pp. 5450
Author(s):  
Alexandros Arsalis ◽  
George E. Georghiou

A small-scale, decentralized hybrid system is proposed for autonomous operation in a commercial building (small hotel). The study attempts to provide a potential solution, which will be attractive both in terms of efficiency and economics. The proposed configuration consists of the photovoltaic (PV) and solid oxide fuel cell (SOFC) subsystems. The fuel cell subsystem is fueled with natural gas. The SOFC stack model is validated using literature data. A thermoeconomic optimization strategy, based on a genetic algorithm approach, is applied to the developed model to minimize the system lifecycle cost (LCC). Four decision variables are identified and chosen for the thermoeconomic optimization: temperature at anode inlet, temperature at cathode inlet, temperature at combustor exit, and steam-to-carbon ratio. The total capacity at design conditions is 70 and 137.5 kWe, for the PV and SOFC subsystems, respectively. After the application of the optimization process, the LCC is reduced from 1,203,266 to 1,049,984 USD. This improvement is due to the reduction of fuel consumed by the system, which also results in an increase of the average net electrical efficiency from 29.2 to 35.4%. The thermoeconomic optimization of the system increases its future viability and energy market penetration potential.

2021 ◽  
Author(s):  
L. Mantelli ◽  
M. L. Ferrari ◽  
A. Traverso

Abstract Pressurized solid oxide fuel cell (SOFC) systems are one of the most promising technologies to achieve high energy conversion efficiencies and reduce pollutant emissions. The most common solution for pressurization is the integration with a micro gas turbine, a device capable of exploiting the residual energy of the exhaust gas to compress the fuel cell air intake and, at the same time, generating additional electrical power. The focus of this study is on an alternative layout, based on an automotive turbocharger, which has been more recently considered by the research community to improve cost effectiveness at small size (< 100 kW), despite reducing slightly the top achievable performance. Such turbocharged SOFC system poses two main challenges. On one side, the absence of an electrical generator does not allow the direct control of the rotational speed, which is determined by the power balance between turbine and compressor. On the other side, the presence of a large volume between compressor and turbine, due to the fuel cell stack, alters the dynamic behavior of the turbocharger during transients, increasing the risk of compressor surge. The pressure oscillations associated with such event are particularly detrimental for the system, because they could easily damage the materials of the fuel cells. The aim of this paper is to investigate different techniques to drive the operative point of the compressor far from the surge condition when needed, reducing the risks related to transients and increasing its reliability. By means of a system dynamic model, developed using the TRANSEO simulation tool by TPG, the effect of different anti-surge solutions is simulated: (i) intake air conditioning, (ii) water spray at compressor inlet, (iii) air bleed and recirculation, and (iv) installation of an ejector at the compressor intake. The pressurized fuel cell system is simulated with two different control strategies, i.e. constant fuel mass flow and constant turbine inlet temperature. Different solutions are evaluated based on surge margin behavior, both in the short and long terms, but also monitoring other relevant physical quantities of the system, such as compressor pressure ratio and turbocharger rotational speed.


2005 ◽  
Vol 2 (3) ◽  
pp. 179-185 ◽  
Author(s):  
Yasunobu Mizutani ◽  
Koji Hisada ◽  
Kenji Ukai ◽  
Misuzu Yokoyama ◽  
Hirofumi Sumi

A solid-oxide fuel-cell (SOFC) system based on planar type cells and a cylindrical stack design was examined for small-scale stationary applications. To reduce the operating temperature of electrolyte-supported type cells, scandia-stabilized zirconia (ScSZ) was employed as the electrolyte. A compact catalytic partial oxidation (CPOx) reformer was employed and thin ferritic stainless steel was used for the interconnect bipolar plates. As a result, a carefully designed internal manifold-type 68 cell stack produced an output of 1kW at 1073K with thermal self-sustaining conditions. Also, important issues in realizing high-efficiency, cost-effective SOFC systems are discussed.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3512 ◽  
Author(s):  
Alexandros Arsalis ◽  
George Georghiou

New energy solutions are needed to decrease the currently high electricity costs from conventional electricity-only central power plants in Cyprus. A promising solution is a decentralized, hybrid photovoltaic-solid oxide fuel cell (PV-SOFC) system. In this study a decentralized, hybrid PV-SOFC system is investigated as a solution for useful energy supply to a commercial building (small hotel). An actual load profile and solar/weather data are fed to the system model to determine the thermoeconomic characteristics of the proposed system. The maximum power outputs for the PV and SOFC subsystems are 70 and 152 kWe, respectively. The average net electrical and total efficiencies for the SOFC subsystem are 0.303 and 0.700, respectively. Maximum net electrical and total efficiencies reach up to 0.375 and 0.756, respectively. The lifecycle cost for the system is 1.24 million USD, with a unit cost of electricity at 0.1057 USD/kWh. In comparison to the conventional case, the unit cost of electricity is about 50% lower, while the reduction in CO2 emissions is about 36%. The proposed system is capable of power and heat generation at a lower cost, owing to the recent progress in both PV and fuel cell technologies, namely longer lifetime and lower specific cost.


2015 ◽  
Vol 13 (7) ◽  
pp. 730-735
Author(s):  
Wen-Tang Hong ◽  
Ya-Ling Wu ◽  
Tzu-Hsiang Yen ◽  
Cheng-Nan Huang ◽  
Hsueh-I Tan ◽  
...  

2015 ◽  
Vol 81 ◽  
pp. 400-410 ◽  
Author(s):  
Junxi Jia ◽  
Abuliti Abudula ◽  
Liming Wei ◽  
Baozhi Sun ◽  
Yue Shi

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1985 ◽  
Author(s):  
Alvaro Fernandes ◽  
Joerg Brabandt ◽  
Oliver Posdziech ◽  
Ali Saadabadi ◽  
Mayra Recalde ◽  
...  

This paper describes the steps involved in the design, construction, and testing of a gasifier-specific solid oxide fuel cell (SOFC) system. The design choices are based on reported thermodynamic simulation results for the entire gasifier- gas cleanup-SOFC system. The constructed SOFC system is tested and the measured parameters are compared with those given by a system simulation. Furthermore, a detailed exergy analysis is performed to determine the components responsible for poor efficiency. It is concluded that the SOFC system demonstrates reasonable agreement with the simulated results. Furthermore, based on the exergy results, the components causing major irreversible performance losses are identified.


Sign in / Sign up

Export Citation Format

Share Document